高考数学解三角函数及技巧_高考解三角函数题目

投档分数 2025-05-04 10:01:05

一般怎么解三角函数

三角函数是高中数学中的一个难点,重点。解三角函数需要你对公式非常熟悉,并且要熟练,灵活运用公式解题非常重要。 三角这门课主要是讲线段与角度的相互关系,尤其是很的数量关系。所以,大量的背公式是三角的重要内容。1。首先要化时间背,不付出努力,想获得知识是不可能的;2。要从函数的概念,来理解公式说明了什么关系;以上两条是老生常谈。适合于任何学科。(我耳朵已经红了)3。在理解公式的同时,要看图象,逐步形成脑中产生图象。三角中一个很有用的图象是单位圆,就是在XY坐标中,以原点为圆心,单位长1为半径,作一个圆。称单位圆。角A与圆的交点的坐标就是(x,y)。sinA就是x这样长的一段线段,图上的一条对边的长度。(此时sinA=x/r=x/1=x)。同样cosA就是一条横的线段y,tanA就是圆的(1,0)处,作一条切线,在圆外与角A相交,这点到X轴的垂直距离,(这是一条圆外的线段)。在这里我们更理解为什么要称“正切”。这样,所有的三角公式,都能在图上表示出实际的线段关系。如(sinx)^2+(cos)^2=1,在图上就是勾股定理,x^2+y^2=r^2=1,(噜苏一遍,单位圆r=1),这就是所谓的几何含义。你必须把这些公式的几何含义都搞明白了,记三角公式就方便了。包括和公式都有几公式有:何含义编辑本段三角函数定义域和值域,这需要你自己努力了。当然,回过头来说:公式还是要背,但可以从欣赏的角度来背,如海伦公式:三角形的面积=p(p-a)(p-b)(p-c)的平方根;p=(a+b+c)/2;你看多对称,多优美。我们记忆中的的名曲不都是背出来的吗? 你对数学愈了解,就愈能欣赏到数学的优美。这是我学生时代的办法,仅供参考

高考数学解三角函数及技巧_高考解三角函数题目高考数学解三角函数及技巧_高考解三角函数题目


高考数学解三角函数及技巧_高考解三角函数题目


高考数学解三角函数及技巧_高考解三角函数题目


高中数学大题解题方法与技巧

高中数学大题解题方法与技巧同学认真思考过吗,没有的话,快来我这里看看。下面是由我为大家整理的“高中数学大题解题方法与技巧”,仅供参考,欢迎大家阅读。

高中数学大题解题方法与技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;

2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1.证明线面位置关系,一般不需要去建系,更简单;

2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1.搞清随机试验包含的所有基本和所求包含的基本的个数;

2.搞清是什么概率模型,套用哪个公式;

3.记准均值、方、标准公式;

4.求概率时,正难则反(根据p1+p2+...+pn=1);

5.注意计数时利用列举、树图等基本方法;

6.注意放回抽2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。样,不放回抽样;

7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8.注意条件概率公式;

9.注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3.战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2.注意一问有应用前面结论的意识;

3.注意分论讨论的思想;

4.不等式问题有构造函数的意识;

5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6.整体思路上保6分,争10分,想14分。

拓展阅读:高中物理大题答题技巧和规范

高中物理大题答题技巧

审题要仔细,关键字眼不可疏压轴题通常为解析几何和函数导数的题型,难度较大。忽

审题时一定要仔细,尤其要注意一些重要的关键字眼,不要以为是"容易题""陈题"就一眼带过,要注意"陈题"中可能有"新意"。也不要一眼看上去认为是"新题、难题"就畏难而放弃,要知道"难题"也只难在一点,"新题"只新在一处。由于疏忽看错题或畏难轻易放弃都会造成很大的遗憾。

物理过程的分析要注意细节,要善于找出两个相关过程的连接点(临界点)

对于一个复杂的物理问题,首先要根据题目所描述的情景建立正确的物理模型,然后对物理过程进行分析,对于多过程的物理问题,考生一定要注意分析物理过程的细节,弄清各个过程的运动特点及相关联系,找出相关过程之间的物理量之间的关系,做到了这一点,也就找到了解题的突破口,难题也就变得容易了。

高中物理大题答题规范

从这几年的评卷来看,很多学生由于答题不规范,没有相应的应考技巧,导致丢失了很多应得之分,有些学生失分情况相当,一科达20分以上,其中不乏一些较好的学生。为避免这种情况,特别注意以下情形:

一、分步列式,不要用综合或连等式

二、对复杂的数值计算题,结果要先解出符号表达,再代入数值进行计算

结果的表达式占有一定的分值,结果表达式正确计算过程出错,只会丢掉很少的分。若没有结果表达式又出现计算错误,失分机会很大。

三、简洁文字说明与方程式相结合

有的考生解题是从头到尾只有方程,没有必要的文字说明,方程中使用的符号表示什么不提出;有的考生则相反,文字表达太长,像写作文,关键方程没有列出。既耽误时间,又占据了答卷的空间,以上两种情形都会导致丢分。所以在答卷时提倡简洁文字表达,关键处的说明配合图示和物理方程式相结合。

四、尽量用常规方法,使用通用符号

有些考生解题时首先不从常规方法入手,而是为图简便而用一些特殊奇怪的方法,虽然是正确的,但阅卷老师短时间不易看清。同样,使用一些不是习惯的符号来表达一些特点的物理量,阅卷老师也可能会看错。这是因为阅卷现场老师的工作量很重,每天平均阅卷0多份,平均看一道题的时间不过几秒钟。

高考必备数学公式

(Ⅱ)由(Ⅰ)知tanA=2得

高考必备数学公式:

1、三角函数:sin(a+b)=sin(a)cos(b)+cos(a)sin(b)、cos(a+b)=cos(a)cos(b)-sin(a)sin(b)、tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))、sin^2(a)+cos^2(a)=1、1+tan^2(a)=sec^2(a)、1+cot^2(a)=csc^2(a)

2、平面几何:勾股定理:a^2+b^2=c^2、圆的面积:S=πr^2、圆的周长:C=2πr、正方形的面积:S=a^2、矩形的面积:S=长×宽、平行四边形的面积:S=底边×高、梯形的面积:S=1/2×(上底+下底)×高、三角形的面积:S=1/2×底边×高或者海龙公式:S=sqrt[p(p-a)(p-b)(p-c)],其中,p=(a+b+c)/2

3、解析几何:两点间距离公式:d=sqrt[(x2-x1)^2+(y2-y1)^2]、点到直线距离公式:d=|Ax+By+C|/sqrt(A^2+B^2),其中 | | 表示、平面曲线极坐标方程:(x,y)=(rcosθ,rsinθ)

4、概率论:乘法公式:P(A∩B)=P(A)×P(B|A)、加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)、全概率公式:P(B)=∑P(Ai)×P(B|Ai),其中,Ai是样本空间的划分、贝叶斯公式:P(B|A)=P(A|B)×P(B)/P(A),其中,P(B)是先验概率,P(A)和P(A|B)是后验概率

数学高考做题技巧

1、认真审题:在考试中,一定要认真审题,对于不懂的词汇或概念,可结合前后文理解或求助老师。在做题之前,一定要理解题目的意思,抓住重点,并阅读题目中的条件和要求,以此正确解题。

2、要分类讨论:在解题过程中,如n;遇到问题不是一步就能解答的,可以通过分类讨论的方式,对原题进行分拆,例如把问题一分为二,进行逐步推导,这样可以减少答错的概率。

3、掌握公式和技巧:高考数学考试中需要运用很多公式和技巧,在平时复习时一定要把它们掌握,例如完成三角函数类的题目,首先需要掌握三角函数的定义和性质,以此来实现正确解答。

4、要多练习:做高考数学题的技巧是积累的,因此,认真完成老师布置的作业,多做模拟题和历年真题,可以增强做题的信心和耐力,锻炼做题的速度和准确性。

5、勇于放弃:在考试过程中,有些题目难度过大或因为个人知识储备不足而无法解答,这时就要及时放弃,不要浪费时间影响后续的答题,要合理安排时间,优先解答易解和得分高的题目。

高考数学导数解题技巧

现实中考试 三角函数不会考的太难的,包括 考研,,,所以记得基本公式就可以了

高考数学导数解题技巧

1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值, 函数单调性,应用题,与三角函数或向量结合。

高考数学导数中档题是拿分点

1.3.多以解答题的形式出现,有时也在选择、填空题中出现。单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。

2018年高考数学答题模板

+a

高考数学答题模板

1选择填空题

1、答题方法

高考数学选择题速解方法:排除法、设条件法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;数学填空题速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、易错点归纳

数学易混淆难记忆考点分析:概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

2解答题

数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题。

1、三角函数

考察正弦、余弦公式、三角形基本性质、三种基本三角函数之间的转化与角度的化简。

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。常见的三角函数包括正弦函数、余弦函数和正切函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

答题方法:巧用数形结合、化归转化等方法解题。

例1:设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2sinabA

(1)求B的大小。

(2)求cosA+sinC的取值范围。

QQ截图20160604084443.jpg

2、概率统计

考察排列、组合运用分布列罗列、期望计算等知识点。

概率所研究的内容一般包括随机的概率、统计性和更深层次上的规律性。对于任何的概率值一定介于0和1之间。有一类随机,它具有两个特点:,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。

3、数列

考察通项公式和求和公式的运用。

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。

答题方法:通项公式三大解法:和作,积作商,找规律叠加化简等;求和公式三大解法:直接公式,错位相减,分组求和等。四步理清解题思路。

例题3:设各项均为正数的数列{an}和{bn}满足:an、bn、an+1成等数列,bn、an+1、bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn

解:依题意得:

2bn+1=an+1+an+2①

a2n+1=bnbn+1②

代入①并同除以得:

∵b1=2,a2=3

∴当n≥2时,

又a1=1,当n=1时成立

4、立体几何

椭圆,双曲线,抛物线方程的长短轴性质,离心率等,直线与圆锥曲线联立,求解某点,证明某直线与圆锥曲线的关系等。

答题方法:直接逻辑法:面面,线面,线面垂直平行等性质的运用;空间向量法:线面垂直,平行时用向量如何表达,公式;等面积、体积法:找到最方便计算的图形。

5、导数函数

答题方法:理清解题思路。

例题5:已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=_____.

将f′(2)看出常数利用导数的运算法则求出f′(x),令x=2求出f′(2)代入f′(x),令x=5求出f′(5).

解:f′(x)=6x+2f′(2)

令x=2得

f′(2)=-12

∴f′(x)=6x-24

∴f′(5)=30-24=6

故为:6

6、压轴题

答题方法:解答压轴题的解题思路,如复杂问题简单化、运动问题静止化、一般问题特殊化等思维方法,以求突破。

高考数学答题技巧

高考数学答题技巧1:充分利用考前五分钟

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。我发现很多考生拿到试卷之后,就从个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。这六个大题的难度分布一般是从易到难。我们为了应付这样的一次考试,提前做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。特别是要看看那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就能够控制速度和质量。如果倒数第二题也没有什么感觉,你就想,可能今年这个题出得比较难,那么我现在的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

高考数学答题技巧2:进入考试阶段先要审题

审题一定要仔细,一定要慢。我发现数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

高考数学答题技巧3:培养自己一次就做对的习惯

现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。所以我希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。

高考数学答题技巧4:要由易到难

一般大型的考试是要有一个铺垫的,比如说前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。1979年的高考,数学就吓倒了很多人。它个题就是一个大题,很多学生就被吓蒙了,于是整个考试考得一塌糊涂,就出现一些心态的不稳。所以后期,就因为这样的一些性的试题的出现,不能让一个学生正常发挥,我们在命题的时候一般遵循由易到难的规律,先让学生慢慢地进入状态,再去慢慢地加大难度。有些学生自以为水平很高,对那些简单的题目不屑一顾,所以干脆从一个题开始做,这种做法风险太大。因为一个题一般来讲,难度都很大,你一旦在这个地方卡壳,不仅耽误了你的时间,而且会让你的心情受到很大的影响,甚至影响整场考试的发挥。

当然由易到难并不是说从题一直做到一个,以数学高考题为例,一般数学高考题有三个小高峰:个小高峰出现在选择题的一题,它的难度属于难题的层次;第二个小高峰是填空题的一题,也是比较难的;第三个小高峰出现在大题的一题。我说由易到难,是说要把握住这三个小高峰。

高考数学答题技巧5:控制速度

平常有学生问我:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?”我觉得这个不能一概而论,应该说你平常用什么样的速度做题,考试的时候就用什么样的速度,不要人为地告诉自己,考试的时候要加快速度。其实你考试的时候,速度要是和平常训练的速度距比较大的话,很可能因为你速度一加快,反而导致了质量的下降。一场大型的考试,你会做的题目本身就那么多,如果你加快速度,结果把会做的题目做错,而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成会做的题目得不着分,不会做的题目根本不得分。不要担心“做慢了,做不完”,把握住一点,一个学生的正常考试,如果始终在自己会做的题目上全神贯注的话,这场考试一定是正常发挥的,甚至是超水平发挥。你一直投入到会做的题目中,按照你平常训练的速度,踏踏实实地往前推进。即使你发现时间到了,后边还有题目可能会做但来不及了,我也不认为这是一个令你后悔的结果。结果出来你会发现,你得到的分数往往会比你的实际水平要高。所以考试的时候要控制速度,我觉得这是考试技巧的一个很重要的方面。

高考数学得分技巧

在三门主科中,只有数学最容易拉开距离,也最为同学、家长所关心。由于高考的特殊∴为等数列性,有些同学在考试开始的前5分钟就已乱了方寸,导致谁都不希望的结果。

1.做好前面5个小题。不要小看这几个小题,对稳定情绪,鼓舞士气有很大作用。有些同学就是由于前面个别小题做得不顺,影响整个考试情绪。而一旦前面发挥得好,会感到一路顺手,所向披靡。

2.认真审题。由于前面题目简单,想抓紧时间做完,以便腾出时间做后面的难题,结果把题目看错了,非常可惜。如2000年上海卷第1题就有不少同学犯这种低级错误。

3.确实遇到暂时不会做的题目,可以放一放,但很多同学做不到。担心前面就有不会做,后面肯定更难,从而心慌手抖,头脑一片空白。

要知道难易对大家都一样,你不会别人可能也不会。遇到暂时不会做的题目要敢于“合理放弃”,必要时你可以抬头看看,周围的人还在做这道难题,让他们浪费时间吧,我去做会做的题目。这种心理暗示会减少你的压力,等会做的做完了,状态很好,势如破竹,再回过来,有时一看就会了,这就能使你出色发挥。

4.对多数同学而言,两题的一问是“用不着”做的,如果前面不细心失误而把时间放攻难题上是得不偿失,犯了策略性错误。

5.心理素质不太好的同学,不一定要先看整个试卷,因为遇到难题会紧张。

高考数学中的常考三角函数的公式。

就课本上的那些就够了,什么公式之类的现在根本就不考。记住高考考不到课本外面去。

三角函数一般和解三角形一起出题。

1: cos(A+B) = cosAcosB - sinAsinB;

sin∵an、bn为正数由②得,(A+B2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。) = sinAcosB + cosAsinB;

sin(A-B) = sinAcosB - cosAsinB;

2:倍角公式:

cos2A = cosA^2 - sinA^2;

sin2A = 2sinAcosA;

tan2A = 2tanA/1-tanA^2;

3:和化积、积化和(了解就行,不用掌握)

4:公式

5:半角公式

这个小本的书买得到啊

高中数学三角函数都有哪些公式,还有解题思路呢?

比如说有余弦定理,正弦定理,弧度制,角公式六:度制,函数周期,然后也包括根号解析,还有它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,.....及a都是常数, 这种级数称为幂级数.就是比较难的诱导公式,并且也应该多做这样的题型,解题思路一定要清晰。

1+(tanα)^2=(secα)^2,1+(cotα)^2=(cscα)^2, 降次公式,倍角公式,归一公式 ,正弦和余弦的转化,普遍的转换规律,和角公式 ,这些都是非常好的选择。

分别为正弦定理,余弦定理,根号解析,函数的周期,弧度制,角度制,还有诱导公式,是有解题思路的,而且解题思路非常清晰。

可以选择整体代换的方式,也可以选择分类讨论的方式,也可以选择平方策略等等思路,比较基础的公式有Sin2A=2SinA等等 。最重要的还是要看清楚,然后找到合理的解决方法。

两角和公式,倍角公式,三倍角公式,半角公式,积化和,和化积这些都是比较常见的,并且可以解决许多问题,可以利用这些公式进行解题,可以进行叠加,不断的进行简化,进行解题。

高中三角函数的所有公式是什么啊?

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

同角三角函数间的基本关系式:

公式四:

·平方关系:

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

cotα=cosαcscα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·三角函数恒等变形公式

·两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

编辑本段三角函数的角度换算

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

编辑本段正余弦定理

正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

编辑本段部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

编辑本段特殊三角函数值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None

cota None √3 1 √3/3 0

编辑本段三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+...f(n)(a)/n!(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1x2k-1/(2k-1)!+... (-∞

cos x = 1-x2/2!+x4/4!-...(-1)kx2k/(2k)!+... (-∞

arcsin x = x + 1/2x3/3 + 13/(24)x5/5 + ... (|x|<1)

arccos x = π - ( x + 1/2x3/3 + 13/(24)x5/5 + ... ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1x2k-1/(2k-1)!+... (-∞

cosh x = 1+x2/2!+x4/4!+...(-1)kx2k/(2k)!+... (-∞

arcsinh x = x - 1/2x3/3 + 13/(24)x5/5 - ... (|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

--------------------------------------------------------------------------------

傅立叶级数(三角级数)

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

三角函数的数值符号

正弦 一,二为正, 三,四为负

余弦 一,四为正 二,三为负

正切 一,三为正 二,四为负

sin(x),cos(x)的定义域为R,值域为〔-1,1〕

tan(x)的定义域为x不等于π/2+kπ,值域为R

cot(x)的定义域为x不等于kπ,值域为R

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。小编整理了高中三角函数的公式如下,供大家查阅。

1高中三角函数公式

倍角公式

Sin2A=2SinA·CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

三角函数常用公式

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

高中函数 解题思路

=a^x,

有关函数题目的思路:

★ 高三数学的选择题技巧 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

1.单调性

2.对称性

3.特殊值

4.奇偶性

5.……

用上题说明:

1.二次函数f(x)应该首先想到设:f(x)

=ax^2

+bx

+c

(a不等于0)

2.看到这题已知条件,应该发现特殊值:f(2)=0

(这里可以设f(x)

=ax(x-2),由于f(0)=f(2)=0),

f(x)=2x

有一根为x=0(由于f(0)=0)

3.其次可以发现由于:f(x-1)=f(3-x),所以f(x)关于[(x-1)

+(3-x)]/2

=1对称(即f(x)关于x=1对称)。

对称这点从2也可看出,则现在可以重新设f(x)

=a(x-1)^2

+c

f(0)

1

+c

==>

c=

-a,

所以:f(x)

=a(x-1)^2

-a

=ax(x-2)即在2中的设。

4.方程f(x)=2x有等根,

即ax(x-2)

=2x

=>

a=

-1

说明:ax(x-2)

=2x

=>

x(ax-2a-2)

=0有等根,即2a+2

=所以f(x)=-x(x-2)

5.第二问首先设存在,即当

m<=

x<=

n时,4m

<=

f(x)=-x(x-2)

<=

4n

6.则有两个不等是组:m

<=

x<=

4m

<=

-x(x-2)

<=

4n

,现在需要判断x是否有解。若无解则不存在,若有解则求m

n的值。

7.

n>=x>=m,

-x(x-2)>=4m

=>

x^2

-2x

+4m

<=0有解,则

m<=1/4

<1,

当n<1时:则在m<=x<=n内,f(x)的最小值为f(m),值为f(n)

则:f(m)

=4m

=>

m=0

,m=-2

f(n)

=4n

=>

n=0

,n=-2

由于m

m=-2

,n=0

当n>=1时:则在m<=x<=n内,f(x)的值为f(1)

则:f(1)

=4n

=>

n=1/4

<1与n>=1矛盾。

故存在m=-2

,n=0

8.a>0,且a不等于1

有两个零点

=>

a^x

-x

-a

=有两不等根

设g(x)

h(x)

=x

单调性,

当0

1时,显然成立。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。