工业大数据技术 工业大数据技术架构

投档分数 2025-01-07 12:11:28

工业大数据是什么,及其对企业未来发展的作用?

1、工业大数据是什么?

工业大数据技术 工业大数据技术架构工业大数据技术 工业大数据技术架构


工业大数据技术 工业大数据技术架构


工业大数据技术 工业大数据技术架构


工业大数据是指涵盖工业领域中整个产品的全生命周期,所产生的各类数据及相关技术和应用的总称。

2、这些数据对未来企业的作用

在这里就举两个例子来说明,当然也是鉴于篇幅的关系,不能把所有的工业数据的应用都分享出来。

首先是产品的生产流程和进度的工业数据,这个工业数据主要是提供给生产部门和销售部门使用的,例如生产部门可以根据一个产品的生产流程制定详细的生产结合,并评估每个流程的生产周期,生产成本等等,以便快速的协调生产,合理控制生产周期。

而生产进度的工业数据可以让销售部门的销售人员更加对客户的产品形成控制力,同时也可以实时的将这些生产进度数据分享给客户知悉,从而坚定客户对我们的信心,这对于生产订单的实施和后续订单的吸引都有非常大的好处。

再例如产品质量的工业数据,我们可以通过对每个产品,以及产品对应的工艺流程来分门别类的统计与质量相关的合格率,废品率,不合格类型,报废类型等等,通过这些数据来提升企业生产能力,从而提升企业的产品质量和缩短企业的产品生产周期,甚至大幅度的降低企业生产成本。

而如果是传统的制造企业的话,虽然很多企业也在对一些工业数据进行手工采集和制表归类,但是如何更好的去应用就是一个非常大是问题了,甚至根本就从来都没有使用过。

工业大数据是什么?

工业大数据的本质是数据驱动。就象我们以前说大数据一样,并不是一个名词,而是一个技术代名词,指的是基于大数据的分析、可视化,模型等大数据相关的技术和应用。在大数据技术日益成熟的前提下,与产业的深度整合成为大数据发展的下一个重要方向,埃睿迪的iReadyInsights平台,就是与产业深度融合的大数据平台。其被应用于工业、环保、金融等产业,并且有诸多典型客户。

工业大数据应用难点有哪些

工业大数据应用难点有:

一是大数据技术的运用困难,存在数据不足、数据信噪比低以及数据分析难度高等问题。

二是大数据给信息安全带来新挑战,如工业大数据加大了隐私泄露的风险,对现有存储和安全措施提出了更高要求,以及大数据正在被运用到新的攻击手段中。

三是创造智能新产品,包括智能应用软件、智能基础设备、智能自主产品、智能穿戴产品、智能家居产品等。

四是智能应用系统创新,如智能制造、智能物流和智能企业应用系统等。

目前,工业大数据在产品创新设计、产品故障诊断与预测、供应链的分析和优化、产品销售预测与大数据营销、生产与排程、产品质量管理与分析等场景有广泛的应用。“数据是工业互联网的血液。”何友如此描述大数据与工业互联网的互为动力。

不过,由于工业大数据数据价值密度高,数据类型繁多,多源异构的机构化数据和非结构化数据并存,数据处理实行性要求也非常高,数据关系和关联性异常复杂等特征,企业如何从数据统计分析能力转变为大数据分析、预测和决策能力,促进传统工业升级改造和产业整合,是目前要解决的核心关键问题。

工业大数据的概念(工业大数据的概念及相关技术)

1、工业大数据的概念。

2、工业大数据的概念及相关技术。

3、工业大数据的概念股票。

4、工业大数据的概念及特征。

5、工业大数据的概念及特征论文。

6、工业大数据的概念及来源。

1.工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。

2.其以产品数据为核心,极大延展了传统工业数据范围。

工业大数据有哪些特征?

数据容量大(volume):数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。

多样(variety):指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。

快速(velocity):指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。

价值密度低(value):工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。

时序性(sequence):工业大数据具有较强的时序性,如订单、设备状态数据等。

强关联性(strong-relevance):一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。

准确性(accuracy):主要指数据的真实性、完整性和可靠性,更加关注数据质量以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。

闭环性(closed-loop):包括产品全生命周期横向过程中数据链条的封闭和关联以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。

关于工业大数据有哪些特征,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

工业大数据第三阶段的核心技术主要是

以用户为核心的平台式服务模式。由《大数据技术基础》书中内容得知:工业大数据第三阶段的核心技术主要是以用户为核心的平台式服务模式。大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。