江苏高考数列题真题及解答_江苏数学高考数列大题

外语考试 2025-05-04 10:08:41

求2013年高考江苏卷理科数学试卷!

∴对恒成立

江苏高考数列题真题及解答_江苏数学高考数列大题江苏高考数列题真题及解答_江苏数学高考数列大题


江苏高考数列题真题及解答_江苏数学高考数列大题


AF平面SAB

一、填空题

10. 11. 12. 13.或 14.12

二、解答题

(2)∵ ∴即

∵E.F分别是SA.SB的中点 ∴EF∥AB

又∵EF平面ABC, AB平面ABC ∴EF∥平面ABC

又∵EFFG=F, EF.FG平面ABC∴平面平面

(2)∵平面平面

平面平面=BC

AF⊥SB

∴AF⊥平面SBC 又∵BC平面SBC ∴AF⊥BC

又∵, ABAF=A, AB.AF平面SAB ∴BC⊥平面SAB又∵SA平面SAB∴BC⊥SA

17.解:(1)由得圆心C为(3,2),∵圆的半径为

∴圆的方程为:

显然切线的斜率一定存在,设所求圆C的切线方程为,即

∴∴∴∴或者

∴所求圆C的切线方程为:或者即或者

(2)解:∵圆的圆心在在直线上,所以,设圆心C为(a,2a-4)

则圆的方程为:

又∵∴设M为(x,y)则整理得:设为圆D

∴由得

由得

终上所述,的取值范围为:

∴∴,

∴根据得

(2)设乙出发t分钟后,甲.乙距离为d,则

∴∵即

(3)由正弦定理得(m)

乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C

设乙的步行速度为V ,则

∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内

法二:解:(1)如图作BD⊥CA于点D,

设BD=20k,则DC=25k,AD=48k,

AB=52k,由AC=63k=1260m,

知:AB=52k=1040m.

(2)设乙出发x分钟后到达点M,

此时甲到达N点,如图所示.

则:AM=130x,AN=50(x+2),

由余弦定理得:MN2=AM2+AN2-2 AM·ANcosA=7400 x2-14000 x+10000,

其中0≤x≤8,当x=37(35)(min)时,MN最小,此时乙在缆车上与甲的距离最短.

(3)由(1)知:BC=500m,甲到C用时:50(1260)=5(126)(min).

若甲等乙3分钟,则乙到C用时:5(126)+3=5(141) (min),在BC上用时:5(86) (min) .

此时乙的速度最小,且为:500÷5(86)=43(1)m/min.

若乙等甲3分钟,则乙到C用时:5(126)-3=5(111) (min),在BC上用时:5(56) (min) .

故乙步行的速度应控制在[43(1),14(625)]范围内.

19.证明:∵是首项为,公为的等数列,是其前项和

∴(1)∵ ∴

∵成等比数列 ∴ ∴

∴ ∴ ∵ ∴ ∴

∴∴左边= 右边=

∴左边=右边∴原式成立

(2)∵是等数列∴设公为,∴带入得:

∴由①式得: ∵ ∴

由③式得:

法二:证:(1)若,则,,.

当成等比数列,,

即:,得:,又,故.

由此:,,.

故:().

(从而当n≥8时,2an=an-3+an+3=an-6+an+6,()且an-2+an+2=an-6+an+6,2),

. (※)

观察(※)式后一项,分子幂低于分母幂,

故有:,即,而≠0,

故.

经检验,当时是等数列.

20.解:(1)由即对恒成立,∴

而由知<1 ∴

由令则

∵在上有最小值

∴>1 ∴>

综上所述:的取值范围为

(2)证明:∵在上是单调增函数

∴即对恒成立,

∴而当时,> ∴

分三种情况:

∵ ∴f(x)存在零点

(Ⅱ)当<0时,>0 ∴f(x)在上为单调增函数

∵<0且>0

∴f(x)存在零点

(Ⅲ)当0<时,,令得

∵当0<<时,>0;>时,<0

∴为值点,值为

①当时,,,有零点

②当>0时,0<,有两个零点

实际上,对于0<,由于<0,>0

且函数在上的图像不间断 ∴函数在上有存在零点

另外,当,>0,故在上单调增,∴在只有一个零点

下面考虑在的情况,先证<0

为此我们要证明:当>时,>,设 ,则,再设

∴当>1时,>-2>0,在上是单调增函数

从而在上是单调增函数,进而当>时,>>0

即当>时,>,

当0<<时,即>e时,<0

∴函数在上有存在零点,又当>时,<0故在上是单调减函数∴函数在只有一个零点

综合(Ⅰ)(Ⅱ)(Ⅲ)知:当时,的零点个数为1;当0<<时,的零点个数为2

∴,又∵

∴~

∴ 又∵BC=2OC=2OD ∴AC=2AD

故a=-1,b=0,c=0,d=∴矩阵A的逆矩阵为,

∴==

21.C解:∵直线的参数方程为 ∴消去参数后得直线的普通方程为 ①

同理得曲线C的普通方程为 ②

①②联立方程组解得它们公共点的坐标为,

21.D证明:∵

又∵>0,∴>0,,

∴22.本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力。

解:(1)以为为单位正交基底建立空间直角坐标系,

则,,,,

∴∴异面直线与所成角的余弦值为

(2) 是平面的的一个法向量

设平面的法向量为,∵,

由∴ 取,得,∴平面的法向量为

设平面与所成二面角为

∴, 得

∴平面与所成二面角的正弦值为

23.本题主要考察.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力。

(1)解:由数列的定义得:,,,,,,,,,,

∴,,,,,,,,,,

∴,,,,

(2)证明:用数学归纳法先证

事实上,[来源:Z_xx_k.Com]

① 当时, 故原式成立

② 设当时,等式成立,即 故原式成立

则:,时,

综合①②得: 于是

由上可知:是的倍数

而,所以是

的倍数

又不是的倍数,

而所以不是的倍数

故当时,中元素的个数为

于是当时,中元素的个数为

又故中元素的个数为

2011江苏高考数学试题第13题解答过程▲ .

5.计算能力失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

思路是由已知不等式知道q是大于零的,q值受等1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;数列控制,

要q小,就要等数列的数也小

a2>=a1,所以a2最小是1,从而a4=2,a6=3

而a3=q,a5=q题使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.q,a7=qqq

有不等式a1<=a2<=a3<=a4<=a5<=a6<=a7,即

1<=1<=q<=2<=qq<=3<=qqq,得到3的三次方根是符合不等式的最小实数。

我写的过程不那么严谨,不过我就是这么做的。希望帮到你了

2011江苏高考数学20题第二问详解你怎么做的啊

又>0 且函数在上的图像不间断,

解:(1)由M={1},根据题意可知k=1,所以n≥2时,Sn+1+Sn-1=2(Sn+S1),

∴点M应该既在圆C上又在圆D上 即:圆C和圆D有交点

即(Sn+1-Sn)-(Sn-Sn-1)=2S1,又a1=1,

6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。

则an+1-an=2a1=2,又a2=2,

所以数列{an}除去首项后,是以2为首项,2为公的等数列,

故当n≥2时,an=a2+2(n-2)=2n-2,

所以a5=8;

且n>k时,Sn+k+Sn-k=2(Sn+Sk)①,且Sn+1+k+Sn+1-k=2(Sn+1+Sk)②,

②-①得:(Sn+1+k-Sn+k)+(Sn+1-k-Sn-k)=2(Sn+1-Sn),

即an+1+k+an+1-k=2an+1,可化为:an+1+k-an+1=an+1-an+1-k

所以n≥8时,an-6,an-3,an,an+3,an+6成等数列,且an-6,an-2,an+2,an+6也成等数列,

所以当n≥8时,2an=an-2+an+2,即an+2-an=an-an-2,

于是得到当n≥9时,an-3,an-1,an+1,an+3成等数列,从而an-3+an+3=an-1+an+1,

由()式可知:2an=an-1+an+1,即an+1-an=an-an-1,

当n≥9时,设d=an-an-1,

则当2≤n≤8时,得到n+6≥8,从而由()可知,2an+6=an+an+12,得到2an+7=an+1+an+13,

则an+1-an=2d-d=d,

因此,an-an-1=d对任意n≥2都成立,

又由Sn+k+Sn-k-2Sn=2Sk,可化为:(Sn+k-Sn)-(Sn-Sn-k)=2Sk,

当k=3时,(Sn+3-Sn)-(Sn-Sn-3)=9d=2S3;同理当k=4时,得到16d=2S4,

两式相减得:2(S4-S3)=2a4=16d-9d=7d,解得a4= d,

因为a4-a3=d,解得a3= d,同理a2= d,a1= ,

则数列{an}为等数列,由a1=1可知d=2,

所以数列{an}的通项公式为an=1+2(n-1)=2n-1.

既然有人给你解答了,我就讲一下思路。

第1问就不写了。

第2问道理不多,首先要相信只有等数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。

先把条件用一遍

n>3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即

a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 ()

a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2}

这样就得到了类的三组间隔为3的等子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...}

同理把k=4的条件

a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 ()

用一遍可以得到第二类的四组间隔为4的等子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...}

并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。

用()-()得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等子列。定A_u的公为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7a_4,即类的三组序列的公相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公也相同,简记为D,其大小为D=2a_4。

(如果没有想到()-()这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系)

下一步目标就很明确了,证明整个{a_n}(项除外)就是等数列,同样是从两类序列的公共点着手,取几个特殊点解方程即可。

利用

a_8 = a_2+2d = a_4+D

a_10 = a_2+2D = a_4+2d

解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等数列且公为D-d。

结合前面的d=6/7a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。

这个问题很复杂,不做数学N年了

a1=1、an=3奇、an=4偶

问题是需要自己去做的,而不是去靠别人。

题目呢。高考过去这么多天。谁记得啊。

请教恩师呀

2n-1

2008江苏高考化学第13题详细解答分析

∴时,即乙出发分钟后,乙在缆车上与甲的距离最短。

研究当<时<0,当>时>0,反应物的化学计量数与产物之间的关系时,使用类似数轴的方法此时乙的速度,且为:500÷5(56)=14(625)m/min.可以收到的直观形象的效果。这类一般涉及的是量变引起质变的反应,而Fe在Cl2中的燃烧产物的产物是固定的(三氧化铁),故选D。

历届江苏高考试题及WORD版

绝密★启用前

2008年普通高等学校招生全国统一考试(江苏卷)

数 学

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的

2.选择题使用2B

铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他标号;非选择

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

样本数据 , , , 的标准

其中 为样本平均数

柱体体积公21.B 解:设矩阵A的逆矩阵为,则=,即=,式

其中 为底面积, 为高

一、填空题:本大题共1小题,每小题5分,共70分.

1. 的最小正周期为 ,其中 ,则 = ▲ .

本小题考查三角函数的周期公式.

同理:FG∥平面ABC10

2.一个连续投2 次,点数和为4 的概率 ▲ .

本小题考查古典概型.基本共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

本小题考查复数的除法运算.∵ ,∴ =0, =1,因此

14.A= ,则A Z 的元素的个数 ▲ .

本小题考查的运算和解一元二次不等式.由 得 ,∵Δ<0,∴A 为 ,因此A Z 的元素不存在.

5. , 的夹角为 , , 则 ▲ .

本小题考查向量的线性运算.

76.在平面直角坐标系 中,设D是横坐标与纵坐标的均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .

本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.

7.算法与统计的题目

本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.

ln2-1

9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:

( ▲ ) .

本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.

10.将全体正整数排成一个三角形数阵:

12 3

7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ 3. 表示为 ,则 = ▲ ..

本小题考查归纳推理和等数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .

11.已知 , ,则 的最小值 ▲ .

本小题考查二元基本不等式的运用.由 得 ,代入 得

,当且仅当 =3 时取“=”.

设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .

13.若AB=2, AC= BC ,则 的值 ▲ . ?

本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,

2011江苏高考数学20题第二问详解你怎么做的啊

(2)根据题意可知当k∈M={3,4},

解:(1)由M={1},根据题意可知k=1,所以n≥2时,Sn+1+Sn-1=2(Sn+S1),

准考证号、姓名,并将条形码粘贴在指定位置上.

即(Sn+1-Sn)-(Sn-Sn-1)=2S1,又a1=1,

则an+1-an=2a1=2,又a2=2,

所以数列{an}除去首项后,是以2为首项,2为公的等数列,

故当n≥2时,an=a2+2(n-2)=2n-2,

所以a5=8;

且n>k时,Sn+k+Sn-k=2(Sn+Sk)①,且Sn+1+k+Sn+1-k=2(Sn+1+Sk)②,

②-①得:(Sn+1+k-Sn+k)+(Sn+1-k-Sn-k)=2(Sn+1-Sn),

即an+1+k+an+1-k=2an+1,可化为:an+1+k-an+1=an+1-an+1-k

所以n≥8时,an-6,an-3,an,an+3,an+6成等数列,且an-6,an-2,an+2,an+6也成等数列,

所以当n≥8时,2an=an-2+an+2,即an+2-an=an-an-2,

于是得到当n≥9时,an-3,an-1,an+1,an+3成等数列,从而an-3+an+3=an-1+an+1,

由()式可知:2an=an-1+an+1,即an+1-an=an-an-1,

当n≥9时,设d=an-an-1,

则当2≤n≤8时,得到n+6≥8,从而由()可知,2an+6=an+an+12,得到2an+7=an+1+an+13,

则an+1-an=2d-d=d,

因此,an-an-1=d对任意n≥2都成立,

又由Sn+k+Sn-k-2Sn=2Sk,可化为:(Sn+k-Sn)-(Sn-Sn-k)=2Sk,

当k=3时,(Sn+3-Sn)-(Sn-Sn-3)=9d=2S3;同理当k=4时,得到16d=2S4,

两式相减得:2(S4-S3)=2a4=16d-9d=7d,解得a4= d,

因为a4-a3=d,解得a3= d,同理a2= d,a1= ,

则数列{an}为等数列,由a1=1可知d=2,

所以数列{an}的通项公式为an=1+2(n-1)=2n-1.

既然有人给你解答了,我就讲一下思路。

第1问就不写了。

第2问道理不多,首先要相信只有等数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。

先把条件用一遍

n>3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即

a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 ()

a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2}

这样就得到了类的三组间隔为3的等子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...}

同理把k=4的条件

a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 ()

用一遍可以得到第二类的四组间隔为4的等子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...}

并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。

用()-()得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等子列。定A_u的公为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7a_4,即类的三组序列的公相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公也相同,简记为D,其大小为D=2a_4。

(如果没有想到()-()这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系)

下一步目标就很明确了,证明整个{a_n}(项除外)就是等数列,同样是从两类序列的公共故当>2时,>>0点着手,取几个特殊点解方程即可。

利用

a_8 = a_2+2d = a_4+D

a_10 = a_2+2D = a_4+2d

解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等数列且公为D-d。

结合前面的d=6/7a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。

这个问题很复杂,不做数学N年了

a1=1、an=3奇、an=4偶

问题是需要自己去做的,而不是去靠别人。

题目呢。高考过去这么多天。谁记得啊。

请教恩师呀

2n-1

求2013年高考江苏卷理科数学试卷!

把n用n+1代之后和这个式子减一下得到

∴∴

一、填空题

10. 11. 12. 13.或 14.12

二、解答题

(2)∵ ∴即

∵E.F分别是SA.SB的中点 ∴EF∥AB

又∵EF平面ABC, AB平面ABC ∴EF∥平面ABC

又∵EFFG=F, EF.FG平面ABC∴平面平面

(2)∵平面平面

平面平面=BC

AF⊥SB

∴AF⊥平面SBC 又∵BC平面SBC ∴AF⊥BC

又∵, ABAF=A, AB.AF平面SAB ∴BC⊥平面SAB又∵SA平面SAB∴BC⊥SA

17.解:(1)由得圆心C为(3,2),∵圆的半径为

∴圆的方程为:

显然切线的斜率一定存在,设所求圆C的切线方程为,即

∴∴∴∴或者

∴所求圆C的切线方程为:或者即或者

(2)解:∵圆的圆心在在直线上,所以,设圆心C为(a,2a-4)

则圆的方程为:

又∵∴设M为(x,y)则整理得:设为圆D

∴由得

由得

终上所述,的取值范围为:

∴∴,

∴根据得

(2)设乙出发t分钟后,甲.乙距离为d,则

∴∵即

(3)由正弦定理得(m)

乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C

设乙的步行速度为V ,则

∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内

法二:解:(1)如图作BD⊥CA于点D,

设BD=20k,则DC=25k,AD=48k,

AB=52k,由AC=63k=1260m,

知:AB=52k=1040m.

(2)设乙出发x分钟后到达点M,

此时甲到达N点,如图所示.

则:AM=130x,AN=50(x+2),

由余弦定理得:MN2=AM2+AN2-2 AM·ANcosA=7400 x2-14000 x+10000,

其中0≤x≤8,当x=37(35)(min)时,MN最小,此时乙在缆车上与甲的距离最短.

(3)由(1)知:BC=500m,甲到C用时:50(1260)=5(126)(min).

若甲等乙3分钟,则乙到C用时:5(126)+3=5(141) (min),在BC上用时:5(86) (min) .

此时乙的速度最小,且为:500÷5(86)=43(1)m/min.

若乙等甲3分钟,则乙到C用时:5(126)-3=5(111) (min),在BC上用时:5(56) (min) .

故乙步行的速度应控制在[43(1),14(625)]范围内.

19.证明:∵是首项为,公为的等数列,是其前项和

∴(1)∵ ∴

∵成等比数列 ∴ ∴

∴ ∴ ∵ ∴ ∴

∴∴左边= 右边=

∴左边=右边∴原式成立

(2)∵是等数列∴设公为,∴带入得:

∴由①式得: ∵ ∴

由③式得:

法二:证:(1)若,则,,.

当成等比数列,,

即:,得:,又,故.

由此:,,.

故:().

(2),

. (※)

观察(※)式后一项,分子幂低于分母幂,

故有:,即,而≠0,

故.

经检验,当时是等数列.

20.解:(1)由即对恒成立,∴

而由知<1 ∴

由令则

∵在上有最小值

∴>1 ∴>

综上所述:的取值范围为

(2)证明:∵在上是单调增函数

∴即对恒成立,

∴而当时,> ∴

分三种情况:

∵ ∴f(x)存在零点

(Ⅱ)当<0时,>0 ∴f(x)在上为单调增函数

∵<0且>0

∴f(x)存在零点

(Ⅲ)当0<时,,令得

∵当0<<时,>0;>时,<0

∴为值点,值为

①当时,,,有零点

②当>0时,0<,有两个零点

实际上,对于0<,由于<0,>0

且函数在上的图像不间断 ∴函数在上有存在零点

另外,当,>0,故在上单调增,∴在只有一个零点

下面考虑在的情况,先证<0

为此我们要证明:当>时,>,设 ,则,再设

∴当>1时,>-2>0,在上是单调增函数

从而在上是单调增函数,进而当>时,>>0

即当>时,>,

当0<<时,即>e时,<0

∴函数在上有存在零点,又当>时,<0故在上是单调减函数∴函数在只有一个零点

综合(Ⅰ)(Ⅱ)(Ⅲ)知:当时,的零点个数为1;当0<<时,的零点个数为2

∴,又∵

∴~

∴ 又∵BC=2OC=2OD下一步证明每一类内部的几个等数列的公是一样的,因为3和4互质,做到这里应该已经可以相信结论一定是对的。 ∴AC=2AD

故a=-1,b=0,c=0,d=∴矩阵A的逆矩阵为,

∴==

21.C解:∵直线的参数方程为 ∴消去参数后得直线的普通方程为 ①

同理得曲线C的普通方程为 ②

①②联立方程组解得它们公共点的坐标为,

21.D证明:∵

又∵>0,∴>0,,

∴22.本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力。

解:(1)以为为单位正交基底建立空间直角坐标系,

则,,,,

∴∴异面直线与所成角的余弦值为

(2) 是平面的的一个法向量

设平面的法向量为,∵,

由∴ 取,得,∴平面的法向量为

设平面与所成二面角为

∴, 得

∴平面与所成二面角的正弦值为

23.本题主要考察.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力。

(1)解:由数列的定义得:,,,,,,,,,,

∴,,,,,,,,,,

∴,,,,

(2)证明:用数学归纳法先证

事实上,[来源:Z_xx_k.Com]

① 当时, 故原式成立

② 设当时,等式成立,即 故原式成立

则:,时,

综合①②得: 于是

由上可知:是的倍数

而,所以是

的倍数

又不是的倍数,

而所以不是的倍数

故当时,中元素的个数为

于是当时,中元素的个数为

又故中元素的个数为

2009年和2010年江苏理科数学高考卷试题和

8.直线 是曲线 的一条切线,则实数b= ▲ .

2010 年江苏高考数学试题 一、填空题 1、设A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整到电视塔的距离d(单位m),使α与β之较大,可以提高测量度,若电视塔实际高度为125m,问d为多少时,α-β A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公为 的等数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①= , 7求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 【理科附加题】 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公不为零的等数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均?的综合满意度为多少? 学科网 (3) 记(2)中的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网

4 5 6

2009年和2010年江苏理科数学高考卷试题和

∴中元素的个数为5

2010 年江苏高考数学试题 一、填空题 1、设A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的值是_____▲____ 13、在锐角三又>0 且函数在上的图像不间断,角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3)15.解:(1)∵ ∴ 即,,C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整到电视塔的距离d(单位m),使α与β之较大,可以提高测量度,若电视塔实际高度为125m,问d为多少时,α-β A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公为 的等数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 【理科附加题】 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公不为零的等数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均?的综合满意度为多少? 学科网 (3) 记(2)中的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。