完整版高考数学解析_新高考数学解析

招生章程 2024-11-10 09:55:49

关于高考数学选择题知识点

y=2sinC+4sinA=2sin(180-60-A)+4sinA=5sinA+√3cosA

数学已成为许多及地区的 教育 范畴中的一部分。它应用于不同领a.4x-y-3=0 b.x+4y-5=0域中,包括科学、工程、医学、经济学和金融学等。数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。这次我给大家整理了高考数学选择题知识点,供大家阅读参考。

完整版高考数学解析_新高考数学解析完整版高考数学解析_新高考数学解析


完整版高考数学解析_新高考数学解析


完整版高考数学解析_新高考数学解析


目录

高考数学选择题知识点

高考数学必背知识点

高考数学选择题技巧

高考数学选择题知识点

,函数与导数。主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考数学必背知识点

一、三角函数题

三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的 热点 .

二、数列题

数列题重点考查等数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想 方法 ,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.

三、立(B)8(C)4 (D)10体几何题

常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握.

四、概率问题

概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”.概率重点考查离散型随机变量的分布列与期望、互斥有一个发生的概率、相互同时发生的概率、重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力.同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备.

五、圆锥曲线问题

解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位.考查重点:,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的,将两种或两种以上的知识结合起来综合考查.如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性.第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见.有关解析几何的最值、定值、定点问题应给予重视.一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测.

导数题考查的重点是用导数研究函数性质或解决与函数有关的问题.往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想.鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻.近几年该类试题与解析几何题轮流“”,经常充当“把关题”或“压轴题”的重要角色.

高考数学选择题技巧

1.顺推法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

2.逆推验证法(代入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

5.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

6.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确的方法。

7.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

关于高考数学选择题知识点相关 文章 :

★ 高考数学选择题知识点

★ 高三数学选择题知识点

★ 高三数学知识点考点总结大全

★ 高考数学大题题型总结及技巧

★ 高考数学选择题方法

★ 高考数学必考知识点

★ 高考数学知识点归纳整理 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

吉林高考数学试题及解析点评难不难,附word文字完整版

,解得 或-1,又因为圆心在x轴的正半六、导数、极值、最值、不等式恒成立(或逆用求参)问题轴上,所以 ,故圆心座标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程答题步骤:为 。

2019年全国卷2高考数学试卷试题及解析(WORD版)

而 log2,3>log2,e>1,所以a2015年高考全国卷2理科数学试题及解析(word精校版)

(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为

注意事项:

1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的后,用铅笔把答题卡上对应题目的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他标号。写在本试卷上无效。

3.回答第II卷时,将写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()

(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}

,故 ,故选A

(A)-1(B)0(C)1(D)2

【】B

(3)根据下面给出的2004年至2013年我国排放量(单位:万吨)柱形图。以下结论不正确的是()

(B)2007年我国治理排放显现

(D)2006年以来我国年排放量与年份正相关

【】D

【解析】由柱形图得,从2006年以来,我国排放量呈下降趋势,故年排放量与年份负相关.

(4)等比数列{【】Aan}满足a1=3,

=21,则 ()

(A)21(B)42(C)63(D)84

【】B

(5)设函数

, ()

(A)3(B)6(C)9(D)12

【】C

,又 ,所以 ,故 .

(A)

(B) (C) (D)

【】D

【解析】由三视图得,在正方体

中,截去四面体 ,如图所示,,设正方体棱长为 ,则 ,故剩余几何体体积为 ,所以截去部分体积与剩余部分体积的比值为 .

(7)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则

=(A)2

【】C

(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a=

A.0B.2C.4D.14

【】B

【解析】程序在执行过程中,

(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的值为36,则球O的表面积为

A.36πB.64πC.144πD.256π

【】C

【解析】如图所示,当点C位于垂直于面

的直径端点时,三棱锥 的体积,设球 的半径为 ,此时 ,故 ,则球 的表面积为 ,故选C.

10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A、B两点距离之和表示为x的函数f(x),则f(x)的图像大致为

【】B

的运动过程可以看出,轨迹关于直线 对称,且 ,且轨迹非线型,故选B.

(11)已知A,B为双曲线E的左,右顶点,点M在E上,?ABM为等腰三角形,且顶角为120°,则E的离心率为

(A)√5(B)2(C)√3(D)√2

【】D

(12)设函数f’(x)是奇函数

的导函数,f(-1)=0,当 时, ,则使得 成立的x的取值范围是

(A)

(B)

(C)

(D)

【解析】

,则 ,因为当 时, ,故当 时, ,所以 在 单调递减;又因为函数 是奇函数,故函数 是偶函数,所以 在 单调递减,且 .当 时, ,则 ;当 时, ,则 ,综上所述,使得 成立的 的取值范围是 ,故选A.

二、填空题

(13)设向量

, 不平行,向量 与 平行,则实数 _________.

【解析】因为向量

与 平行,所以 ,则 所以 .

(14)若x,y满足约束条件

,则 的值为____________.

(15)

的展开式中x的奇数次幂项的系数之和为32,则 __________.

,故 的展开式中x的奇数次幂项分别为 , , , , ,其系数之和为 ,解得 .

(16)设

是数列 的前n项和,且 , ,则 ________.

,两边同时除以 ,得 ,故数列 是以 为首项, 为公

的等数列,则 ,所以 .

三.解答题

(17)?ABC中,D是BC上的点,AD平分∠BAC,?ABD是?ADC面积的2倍。

(Ⅰ)求

;(Ⅱ)若

=1,

=求

和的长.

(18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:62738192958574645376

78869566977888827689

B地区:738362514653736482

93486581745654766579

(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。设两地区用户的评价结果相互。根据所给数据,以发生的频率作为相应发生的概率,求C的概率

19.(本小题满分12分)

如图,长方体ABCD—A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由);

(2)求直线AF与平面α所成的角的正弦值。

20.(本小题满分12分)

已知椭圆C:

,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。

(1)证明:直线OM的斜率与l的斜率的乘积为定值;

(2)若l过点

,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。

21.(本小题满分12分)

设函数

。(1)证明:

在 单调递减,在 单调递增;

(2)若对于任意

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的题记分。作答时请写清题号

22.(本小题满分10分)

选修4-1:几何证明选讲

如图,O为等腰三角形ABC内一点,⊙O与ΔABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点。

(2)若AG等于⊙O的半径,且

,求四边形EBCF的面积。

23.(本小题满分10分)

选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线C1:

(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2: ,C3: 。

(1)求C2与C3交点的直角坐标;

(2)若C1与C2相交于点A,C1与C3相交于点B,求

的值。

24.(本小题满分10分)

选修4-5:不等式选讲

设a,b,c,d均为正数,且a+b=c+d,证明:

(1)若ab>cd;则

;(2)

是 的充要条件。

附:全部试题

;

新高考II卷高考数学试卷真题和解析[Word文字版]

【答1.考查双基、注重覆盖案】

一、新高考II卷高考数学试卷真题和解析新高考II卷高考数学试卷真题和解析正在快马加鞭的整理当中,考试结束后我们时间发(1)证明:EF∥BC;布word文字版。考生可以在线点击阅览:

2018年浙江高考数学试卷试题及解析(WORD版)

解答题分步骤解答可多得分

2018年浙江高考数学试卷试题及解析(WORD版)

<<<

2015年浙江省高考数学命题思路

2 .注重综合,适度创新

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理异,逐步调整

试卷关注文理学生的学习异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要学生学会在“看、做、想、研”的基础上做题。

高考数学大题题型总结

导语:高考数学就是多题型的考试,需要考生多做多总结,数学网整理了高考数学题型:多做典型题多归纳总结,帮助大家提升。接下来我将跟大家一起来分享关于高考数学大题题型总结,欢迎大家的借鉴参考!希望文章能够帮助到大家!

高考数学题型:多做典型题多归纳总结

多做典型题

众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,高中化学,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。

所说的“多”是指题目类型,而不仅仅单纯只是题目数量多。数学中题目多,通过合并,题目类型就有限了,只要把各种类型的题目各自做一定数量,加上细心领悟分析,就会发现题目的规律,进而归纳和总结出不同类型的题。

善归纳总结

在复习过程中,不仅要做典型的题,而且还要善于归纳总结。有些同学就只喜欢做难题,而忽略了基础忽略了做题后的归纳与总结,总结出解题过程中的方法与技巧,总结出知识点内在的区别与联系。

实际上,所谓的难题、综合题都是由几个知识点综合在一起,如果你把基础打扎实了,各个知识点弄通了,难题综合题也就迎刃而解了,你没有发现吗?每个大题都有2-4个小问题,每个小问题单独掰开来看就是一个基础题,只不过是一个小问可能与前一个小问有关联而已。只要你善于去归纳总结,你就会发现各个知识点之间的内在联系,找到它们的关键的核心问题。

高考“考试之前还挺担心的,总是害怕题会难,不过没有想象得那么难,题还可以,做起来很顺手,答得也很顺利。”一名姓王的学生说,这些题型之前她都练习过,觉得挺简单的。“今年的题还可以,不过题型跟去年的有点区别,去年的语文高考题题是读音题,第二题是字词辨识,今年把第二题省掉了,多了一道关于标点符号的题。”一名姓孙的同学说,这种题型在前两年的时候考过,不过考试之前她也练习过。数学大题题型总结

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

1、几何问题代数化。

2、用代数规高考生考后关注的重要问题之一就是试卷及分析点评,因为这关系到2023吉林高考分数线的高低,本文就此问题整理了吉林高考数学试题难易程度分析相关信息内容,供大家查阅参考。则对代数化后的问题进行处理。

高考解析几何解题套路及各步骤作规则

步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(“翻译”);

口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;

2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;

3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;

步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;

这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得的基础,就是解方程组的问题了。

3、在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。

二、立体几何篇

高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合

1.有关平行与垂直 (线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2. 通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

3 .解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

三、数列问题篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

知识整合

1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

四、导数应用篇

专题综述

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的.学习,主要是以下几个方面:

1. 导数的常规问题:

(1)刻画函数(比初等方法细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

知识整合

1. 导数概念的理解。

2. 利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3. 要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

五、排列组合篇

1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机的发生存在着规律性和随机概率的意义。

6. 了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。

7. 了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。

8. 会计算在n次重复试验中恰好发生k次的概率。

2019年山东高考数学试卷试题及解析(WORD版)

(C)2006年以来我国年排放量呈减少趋势

2012年高考,山东省整体考题偏简单,尤其是数学和理综两科,难度不算大,结果2012年山东高分考生扎堆,填志愿都不好填。2013年,山东省实施“3+X+1”高考模式的一年,高考试题是会求稳、平平淡淡,还是比去年难一点儿,增加区分度?这样的疑问,在高考天就有了结果。6月7日上午的语文科目,虽然大部分考生都说题挺常规,能提前答完,但部分青岛2中、58中的考生却表示题目有些怪,得高分不容易;下午的数学尤其是理科数学,让一批孩子红着眼圈走出考场,大呼太难。面对众多首日高考后郁闷的孩子,家长们连夜在高考QQ群里商讨“灭火”办法,帮孩子们尽快调整状态。

感觉比一模的题简单

6月7日上午科是语文,11点刚过,在青岛2中理科考点前,等待的家长就陆续将校门围了起来,焦急地等待孩子交卷出来。

“出来了,出来了!”11点35分,个考生终于露出身影,一个穿深蓝色运动衣的男生小跑着跑向校门,很多家长举起手里的相机给这个“位走出战场的战士”拍了个照。随后“大部队”有说有笑地陆续走出考场,表情都比较放松。“今天的★ 2022年高考数学答题技巧(最全)语文题挺简单的,感觉比一模的题还要简单,没有什么太复杂的。”一位走出考场的考生小刘告诉记者。

采访中突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。记者了解到,对试题的反应,大部分考生与小刘一样都表示题目不难,比较简单,也没有古怪、偏难的题目,作文审题比较容易,也不难写。但就是题型有些变化,“文言文解释以前三个题,今年变成了两道题,但每道题5分,总分没少,所以做起来比较谨慎,因为每个题的分值大了,稍微错个字就可能扣分。”一名考生告诉记者,除了这道题外,选择题的第二道题也有所变化,以前选项里都是给出词语找错别字,今年的第二题虽然也是找错别字,但却给出了四句话,让在四句话里找错别字,“整体感觉还行,不是很难。”

题目有些怪得高分不易

记者采访时,不少学生表示语文题很常规,而且难度也不大。“我提前15分钟就答完了。”记者采访时,不少学生称,不仅题目比较简单,题量也不是很大,答题时间很充裕。

虽然记者在各考点碰到的考生,大都反映语文试题比较常规,但当天下午与家长深入交流时,一些2中、58中的学生家长表示,孩子说语文题并不如想象中那么容易,其实题目有一些怪,想得高分并不是容易的事儿。

作文避热点没考“梦”

每年的语文作文分值颇重,也是考生家长和各方关注的焦点。今年高考前,不少学校都将高考作文押宝到“梦”上,实际题目另有其他,但是考生们普遍感觉还比较好写。

“今年的作文是给了一段话,就是说有个杂志社开了一个‘咬文嚼字’的栏目,专门给现代作家的作品挑刺,其中就有莫言的作品,莫言被挑错后,说非常感谢这些人的评判,他说通过别人挑错可以消除谬误。”一名姓张的女孩说,作文要求根据这段话自己立意。“我觉得这个不难,我写的主题是感谢别人的批判,从批判中不断升华自我。”张同学说。

“我还没仔细研究这套题,但根据学生的反映来看,还是不难的。”对于今年的语文考试作文,青岛39中一位送考的语文老师表示,今年的山东高考语文作文还是比较平稳,考生们也比较好把握,不容易写跑题,而且也紧扣诺贝尔奖的热点,考生发挥的空间也比较大,体现了对待、人生的一种虚怀若谷的态度,要正确对待别人的批评。

记者采访了解到,考题中涉及到的热点内容并不多,但却有题目中提到了国土问题,如选择题的第二题有一个选项写到,“及其附属岛屿自古以来就是的固有领土”。同时还提到了全球化的问题。

理科数学考生考哭了

每年的数学考试,简直就是考生的晴雨表,题简单了,考生出来一脸灿烂,题难了,就有人眼泪汪汪了。7日下午的数学考试,在青岛17中等文科考点,考生们结束考试后普遍还比较淡定。“我觉得题还行吧,能答的都答了,的两道大题,小问都答出来了。”一名17中的女生告诉记者,自己的数学题从来就没有全答完的时候,每次不多都这样,所以觉得还比较正常。

“学生们都挺高兴的,应该还比较顺利。”17中送考的一名数学老师告诉记者,从学生们的反映情况来看,今年的文科数学是比较正常的。

和文科生相比,理科生的数学答得就很辛苦了,有的考生考完就哭了。

“今年的题比去年难很多,比平时的模拟考试也要难。”6月7日下午数学考试刚结束,在青岛2中理科考点,走出考场的一位理科考生就这样跟同伴探讨起了考题,“从道大题就觉得有些奇怪,第二道立体几何那儿我还卡了一下,看一遍觉得这样来推论对,但就是觉得有些怪。”另一位考生说,“我觉得倒数第二题的导数和倒数第三题的数列有难度,这两道题的第二问我都没有答出来。一道圆锥曲线的题倒不是很难,但就是没有时间了,没来得及做完。”

平时都见过,但计算量太大

采访中记者了解到,虽然今年数学题的题型都是平时练过的,如道大题考查三角函数,第二道大题考查立体几何,第三道大题考查概率,第四道大题考查数列,第五道大题考查导数,第六道大题考查圆锥曲线,但考生们普遍反映今年理科数学难点主要在计算量太大,“题型平时都见过,但计算量太大了,一个题第三问都来不及做。”考生小张告诉记者,倒数第二和第三道大题比较难,前面选择填空题中一个选择题比较难,其他题都还可以,但就是计算量大。

“俺孩子平常数学不错的,130分以上肯定没问题,今天一出来,眼泪直接下来了,说能到110分就不错了。”青岛58中家长韩女士告诉记者,孩子考完数学被打击得不行,后来听老师说能到110分就挺好,心情才好了一些。

青岛58中的送考老师王东刚则表示,通过他跟学生和老师们的沟通了解到,今年的数学试题相比去年而言难度更大,“比预计的难度还要大。”对于这种现象,王老师解读认为数学科本身就是有区分度的科目,王老师还提醒考生,无论数学考试考生的现场发挥如何,都无需纠结,应该尽快整理思路准备明天的考试。

理科数学考试结束后,网上在岛城的各大高考QQ群中,关于数学命题太难的吐槽才刚刚开始。“数学老师您辛苦了,数学老师您白辛苦了。”这一吐槽,得到众多考生家长的响应,家长们觉得,如果考题出得太简单,失去区分度,如果出得太难,也失去区分度,那孩子不是白学了吗,数学老师岂不是白辛苦了?

全国卷高中数学高考题解答方法

高考,不仅是对知识的检阅,也是对考生心态的一种考验。同学们只要放松心情,保持好心态,一定能考出好成绩。这次我给大家整理了全国卷高中数学高考题解答 方法 ,供大家阅读参考。

目录

全国卷高中数学高考题解答方法

高考数学填空题答题技巧

高考数学解答题技巧

全国卷高中数学高考题解答方法

1、小题不能大做;

2、不要不管选项;

3、能定性分析就不要定量计算;

4、能特值法就不要常规计算;

5、能间接解就不要直接解;

6、能排除的先排除缩小选择范围;

7、分析计算一半后直接选选项;

8、三个相似选相似。可以利用简便方法进行答题。

高考数学填空题答题技巧

1、直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法:当填空题的结论或题设条件中提供的信息暗示是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

3、数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形运算量减少,对推理和论证的要求提高;考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型;注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来;向量、导数与解析几何有机结合。助数,则往往可以简捷地解决问题,得出正确的结果。

4、等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

5、图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

6、构造法:在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。

高考数学解答题技巧

解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ω,下面说法错误的是( )x+φ看作一个整体,利用y=sin x,y=cos x的性质确定一、解析几何(圆锥曲线)条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

4、离散型随机变量的均值与方

解题思路:

(1)①标记;②对分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的。

③定型:确定的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方公式求解其值。

5、圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

6、解析几何中的探索性问题

解题思路:①一般先设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的设代入已知条件求解;③得出结论。

①先定:设结论成立。

②再推理:以设结论成立为条件,进行推理求解。

全国卷高中数学高考题解答方法相关 文章 :

★ 全国卷数学选择题答题规律技巧

★ 解答高考数学试题策略及答题思路

★ 全国卷高考数学技巧选择题

★ 全国卷数学答题题型

★ 高考数学题型与技巧

★ 高考数学试卷设计及解题思路介绍 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2010年全国高考一卷理科数学的一题的第二问。求详细解答

,所以平面PCD⊥平面PAC;

2010年全国高考一卷理科数学的一题的第二问。求详细解答 方法一:

③退步解答

由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n+1)=lim(n→∞) (c-1/an ),可得c=

h+1/h,显然h>a1,即h>1,又由题意有a(n+1)<3,因此h≤3,可得c的范围是(2,10/3]

方法二:

首先因为an递增,显然a2>a1,代入递推式可知:c>2,然后设c=k+1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n+1)-k)=(kan-k^2+k^2)/(an-k),继续化简有:b(n+1)=k+k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知:

bn=k^2(n-1)(1/1-k^2)+k/1-k^2,从而an=[1-k^2/k^2(n-1)+k]+k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1)+k均递减且趋向于0,因此an也趋向于k,但是,若k<1,从第二项开始均小于1,不满足题意,排除。又an<3,所以k≤3,综合上述k的范围是(1,3],从而可知可得c的范围是(2,10/3]

一开始审题只是想到种方法,第二种方法是做完问的时候察觉到的,我觉得为什么要c=5/2的情况下,an必须减2才能构造等比数列?而且问的时候顺便把an也算出来了,结果an也是等于一个无穷小+2,也就是说趋向于2,显然不仅c值,还有an的极限都与2有关,于是就把它推广,思路就清晰起来了,当an-k时,c=k+f(k),然后必然有an趋向于k,之后对递推式两边减k,有:a(n+1)-k=f(k)-1/an,因此只要保证右边有q1(an-k)/q2an(q1,q2是未知常量)就能像问一样的思路把bn求出来,对比一下就发现,q1/q2=f(k),q1k/q2=1,消去q1/q2,有f(k)=1/k,也就是c=k+1/k的由来了。

求07上海高考文科数学最(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,后一题的详细解答!

去书店买今年的高考真题,那道题全上海都没几个人做出来,你在这是指望不上了,我高考数学139,就栽这道题上了

求2010年全国二卷理科数学一题的。要详细,谢谢!

2010高考数学理科全国卷2 :edu.qq./zt/2010/2010gkst/index.s

2011,2010新课标理科数学一题详细解答

给我你的email吧,我给你发过去

10年高考理科数学全国卷地8题 求详细解答 线上等!

a=log3,2=1/log2,3

b=ln2=1/log2,3

c=1/根号5,而根号5>2=log2,4

所以c

综上所得有:c

求助:2008全国卷1理科数学第15题的详细解答。O(∩_∩)O谢谢!

∴e=3/8

2010年全国高考理科数学试题山东卷

2010年普通高等学校招生全国统一考试(山东卷)

理科数学解析版

注意事项:

1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证

号条形码贴上在答题卡上的指定位置,用2B铅笔将答题卡上试卷型别B后的方框涂黑。

2选择题的作答:每小题选出后,用2B铅笔把答题卡上对应题目的标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他标号。答在试题卷、草稿纸上无效。

3填空题和解答题用0 5毫米黑色墨水箍字笔将直接答在答题卡上对应的答题区

域内。答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)

一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只

有一项是满足题目要求的.

(1) 已知全集U=R,M={x||x-1| 2},则

(A){x|-13} (D){x|x -1或x 3}

【】C

【解析】因为 ,全集 ,所以

【命题意图】本题考查的补集运算,属容易题.

(2) 已知 (a,b∈R),其中i为虚数单位,则a+b=

(A)-1 (B)1 (C)2 (D)3

【】B

【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.

【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。

(3)在空间,下列命题正确的是

(A)平行直线的平行投影重合

(B)平行于同一直线的两个平面平行

(C)垂直于同一平面的两个平面平行

(D)垂直于同一平面的两条直线平行

【】D

【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出。

【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。

(4)设f(x)为定义在R上的奇函式,当x≥0时,f(x)= +2x+b(b为常数),则f(-1)=

(A) 3 (B) 1 (C)-1 (D)-3

【】D

(7)由曲线y= ,y= 围成的封闭图形面积为[来源:ks5u.]

(A) (B) (C) (D)

【解析】由题意得:所求封闭图形的面积为 ,故选A。

【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。

(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在位,节目丙必须排在一位,该台晚会节目演出顺序的编排方案共有

(A)36种 (B)42种 (C)48种 (D)54种

【】B

可知当直线 平移到点(5,3)时,目标函式 取得值3;当直线 平移到点(3,5)时,目标函式 取得最小值-11,故选A。

【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函式 的几何意义是解答好本题的关键。

(11)函式y=2x - 的影象大致是

【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。

【命题意图】本题考查函式的图象,考查同学们对函式基础知识的把握程度以及数形结合的思维能力。

(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令

C.对任意的 ,有 D.

【】B

【解析】若 与 共线,则有 ,故A正确;因为 ,而

,所以有 ,故选项B错误,故选B。

【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。

二、填空题:本大题共4小题,每小题4分,共16分.

(13)执行右图所示的程式框图,若输入 ,则输出 的值为 .

【解析】当x=10时,y= ,此时|y-x|=6;

当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;

当x= 时,y= ,此时|y-x|= ,故输出y的值为 。

【命题意图】本题考查程式框图的基础知识,考查了同学们的试图能力。

【解析】由题意,设所求的直线方程为 ,设圆心座标为 ,则由题意知:

【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。

(18)(本小题满分12分)

已知等数列 满足: , , 的前n项和为 .

(Ⅰ)求 及 ;

(Ⅱ)令bn= (n N),求数列 的前n项和 .

【解析】(Ⅰ)设等数列 的公为d,因为 , ,所以有

,解得 ,

所以 ; = = 。

所以 = = ,

即数列 的前n项和 = 。

【命题意图】本题考查等数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。

(19)(本小题满分12分)

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;

(Ⅱ)求直线PB与平面PCD所成角的大小;

(Ⅲ)求四棱锥P—ACDE的体积.

【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,

所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,

又PA ,所以 ,又AB‖CD,所以 ,又因为

(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则

,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;

2011新课标高考理科数学填空一题的详细解题过程。

y=c+2a

a/sinA=b/sinB=c/sinC=2

值为2√7

2007年高考全国卷1数学一题的第二问,怎么求Bn通项

问题你也要贴出来把!!!

2009年全国高考理科数学卷第二卷的第11题怎么做?请帮忙

不要做了 都高考完了 还做个鸟啊 好好玩 玩了就出成绩了~~

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。