史上最全的数列求和方法汇总如下:
浙江高考数列命题思路总结 浙江高考数学数列大题
浙江高考数列命题思路总结 浙江高考数学数列大题
浙江高考数列命题思路总结 浙江高考数学数列大题
将对多种常见的数列求和方法进行介绍,同时会通过一些高考真题及解答,以加深大家对这些方法的认识和理解。常见的数列求和方式有7种,分别为:裂项相消法、错位相减法、倒序相加法、公式法、分组求和法、数学归纳法和观察法。这7种求解方法之间的联系如下图所示;在具体应用过程中,可根据每种方法的使用条件,灵活求解。若要熟练掌握数列求和方法,需要在掌握基本概念的基础上多加练习,熟能生巧,巧能成精。
顾名思义,就是将数列 an 通项拆分为若干项,一般为某数列 bn 相邻两项之,这样求和时便可以抵消中间部分,只剩首尾两项。
错位相减法
适用于比数列求和,即 an=bncn ,其中 bn 为等数列, cn 为等比数列。详情见数列求和之错位相减法。
公式法
顾名思义,直接利用等你好!现在来说解法有点晚了,不过我去年高考的时候老师有在每一堂复习课上强调解法,或者说是小技巧,我在这里拿出来和你分享一下,希望对你能有帮助。数列和等比数列求和公式进行求解
分组求和法
适合由两容易求和的数列相加组成的数列求和。即可以写成如下表达形式的数列
数学归纳法
数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个/局部自然数范围内成立。
观察法
数列求和方法总结
对数列求和方法做一个总结,同时会列举一些高考真题及解答。
2020年高考数学试卷高考命题大纲,与2018年、2019年数学卷相比,在考核目标、考试范围与要求等方面基本没有大的变化,增加了一些细节要求和知识点的考察,所以2020年高考数学卷难度系数预测和2019年天津高考数学卷难度相当,不会太大出入,由于今年高考特殊的影响,大概率今年高考数学卷难度会降低。
解答思路如下:
总的来说,选择题部分难度一般,只有第8题相对而言难一些,不过对于基础好一些的考生,选择题应该可以拿到满分。接下来再来看看填空题。
9-11题,第9题就是简单的复数模的计算,比较简单。第10题,主要考察大家二项式定理,这是一个容易被忽略却很重要的知识点。在知道二项式定理的情况下,写出通项,再合并得出最终表达式,而题中要求的常数项便是使x的指数为0的项,那么接下来计算就简单了。第11题,主要考察我们图形绘制,能准确绘制出草图,就能很容易求出底面圆的直径以及整个圆柱的高,那么的体积计算便是轻而易举了。
12-14题,12题需要我们能根据圆的参数方程快速得出标准方程,在找出圆心坐标以及半径之后,简单利用点到直线的距离公式便能顺利求解。
13题,相对而言比较巧妙。不少考生会进入一个误区,就是将x用y表示再带入表达式求解,会发现根本没法计算下去。其实只高考数学考试技巧:需要将分子去括号,再将题中告知的已知条件带入,这道题就很简单了。第14题,虽然是填空题一道,但是难度并不大,在绘制出草图之后,将题中已知的数据和推测出的数据标记在图中,那么解题思路就很明显了。
这次考试告诉了我,不能再骄傲了,数学已经不再是以前的基本学科了,我们基本知识都学完了后,现在是真正的几何知识。我一定要加倍努力,快速掌握它。
1、抓住重点内容,注重能力培养
高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来
2、关心教育动态,注意题型变化
由于新增内容是当前生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习,
3、细心审题、耐心答题,规范准确,减少失误
计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。
数学是高中主科之一,也是最容易拉分的科目,那么高中数学必考点有哪些。以下是由我为大家整理的“高中数学考试必考点总结”,仅供参考,欢迎大家阅读。
高中数学考试必考点总结
一.与函数
1.进行的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
5.你知道“否命题”与“命题的否定形式”的区别.
6.求解与函数有关的问题易忽略定义域优先的原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二.不等式
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
三.数列
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先设时成立,再结合一些数学方法用来证明时也成立。
四.三角函数
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.
五.平面向量
40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.
42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
拓展阅读:提升数学的方法
错题分析法
对于数学,多做题是取得数学高分的保证。但是不能忽视纠错这个环节。有很多同学,他们同样是非常努力的,但是成绩总是不见提高,因为他们只是埋头题海之中,对做错的题重视不够。做了很多的题,完了错的还是做错,这样就得不到提高。要在保证题的数量的同时,把做错的题一定得搞清楚弄明白,能够反复再算几遍,争取下一次遇到同类型的题就可以拿下来,那么题海战术才能真正体现它的魅力所在。
总结归类
首先,根据多年的经验,我们将解题思路相近甚至相同的习题归类。其次静下心来思考解这类题有哪几种入手途径,每种途径在具体作时我们应当注意什么问题。比如,使用韦达定理的时候我们要考虑一元二次方程是否有根,特别是我们在做圆锥曲线习题时,有的题目就是通过一元二次方程有根这个条件找参数的范围。
数学中的很多题目,都可以通过“一题多解”来解决,这个方法可能有些老掉牙,但是有效的方法,同时,学生的数学能力也会随之提高。但之所以在这里提出来,是因为这样的方法并不是对于所有知识点都适用的。
举个例子,对于一道导数题,一般会遵循“求导—极值讨论”的步骤进行,很难从中发掘多种解法,而对于三角函数的大题,也一般考查“正余弦定理”、“三角函数的定义域、值域”,也是一题多解不适用的。而像对于解析几何这类的压轴题而言,一题多解就是很能锻炼我们思维方式。
比方说,研究直线与圆锥曲线位置关系的题目,直线的不同设法(关于x、y的方程),圆锥曲线的不同表示形式(方程形式、三角函数形式)都会对题目的解答产生不同的影响。这就需要我审题要认真仔细们碰到这类大题,勤于思考,争取做到“一题多解”。
高考前的总复习是高中三年来的攻坚阶段.采取什么样的复习方法才能提高复习效率,这是我们每个高三数学老师面临的一个重要课题.以下是作者结合以往多年的探讨,谈谈自己关于高考复习的思路及方法.
一、 梳理知识体系,重点落实”三基”
在进一学期的高中数学数学复习中,如何能够根据时间紧,要求高,任务重,知识覆盖面大的特点进行高效的复习,笔者主要采用了三轮复习法.
轮复习的关键依据<<教学大纲>>,对高中数学教材的所有内容以及省高考指导丛书分册中的<<考试说明>>要分析透彻,对所有知识点进行全面的梳理.
知识点主要包括:函数及其图象,解不等式,三角函数,导数,数列,排列组合,二项式定理,概率,向量,立体几何,解析几何。
在轮复习中,着重从以下三点入手:
1、 对知识系统梳理
就是从知识梳理的角度出发,对每单元的知识点从了解、掌握熟练掌握这几个层次进行归纳总结,并指明本单元中的哪些知识点是高考命题的热点问题(即为复习重点),把握本单元教学的重难点及关键.轮分析不宜速度太快,但要面面俱到,细而实,全而稳,为防止遗漏一些知识点,力保基础扎实,基本技能娴熟和教学思路清楚,做到这”三基”是轮复习的基本目标.
2、合理的选择复习资料
首先对进三年来我省高考试卷和全国各省高考题为素材,把既能体现本单元重点考查的知识点又是各省高考题中的重点试题加以精选,进行分析讲解,归纳取其精华。这是毕业班教师必须完成的工作,不要再让学生在题海里遨游了。
在复习中,教师的导向作用十分重要。现在上流传的复习资料名目繁杂,参不齐,教师必须精选精编,始终以教材为基础,复习指导丛书为蓝本,另常见函式值域或最值的经典求法再精选一套有质量的配套资料即可,让学生达到自我意识,自我分析,自我调节的良好学习状态,以优化解题方法,掌握解题规律。
3、 对典型例题、习题进行分析和评析
在复习中,对学生加强能力训练,对每个单元的知识点要寻找联系重点,教师紧扣这些知识点,选取典型例题习题进行评析,同时再编写或精选一些练习题,组织学生加以练习,以检查每个单元学生掌握这些知识点的实际情况及时反馈信息,在复习中也适当进行知识小综合,做到前后呼应,谨防遗漏知识点,增强复习的效果。
二、 分析题型,训练学生思维
在轮复习的基础上,过了单元以后要进一步帮助学生将知识系统化,提高解题的综合能力,为此,进行第二轮复习。这轮复习的关键是在原来的基础上进一步提高,这就需要研究近十年来高考的数学的题型,出卷各类题型的先后顺序,近十年高考来的热点问题。一句话:认真探究高考命题的规律,牢牢把握高考命题的动向。
为提高应试的能力,对目前已经出现的选择题、填空题、解答题、计算题、证明题、应用题、创新题(开放探索题,解意自编题,阅读理解题)和压轴题材等各类题型进行一次单一的训练(及专题练习),然后加以分析和归纳,以展示各种题型所表现出的各种思考策略和解题方法,从而达到开拓学生的解题思路,提高学生分析问题,解决问题的能力的目的。
对题型的分析具体可以按以下三方面进行
① 题型介绍
就是对各种题型的特点,考查内容的目的和意义做详细的说明,已经熟悉的可以弱化,并对每种题型拥有的各种解法作简述,以明确这种解法对题型的适用性和作性。
对近十年的本省和全国高考题为素材,选取和题型有关的考题进行分析,以体现各种解法的可行性,用已经学过的高中数学的基础知识去解答。
围绕各种题型,选配一套与之相关的练习题,这些题目来源于教材及高考考题,以检查学生对各种题型掌握的情况,通过对题型全面而有针对性的研究,使学生能适应新题型的不断变化,掌握各种解题思路,特别是对压轴题,创新题能全方位的提示考题的本来面目,克服对压轴题和创新题的畏惧心理,增加求胜的信念。
由于客观题的总题量明显偏多,这就需要考生在解题时必须牢记解题的知识和方法,具体一定的速度,才能迅速识别试题,作出判断,进行快速解答。因此,在第二轮的习题训练时要同时注重强化解题速度和提高解题的准确率。
三、 综合训练,培养能力、
学生经过近三年的学习和两轮复习,学生的基础知识已经基本过关,基本方法也已熟练掌握,第三轮复习由此开始。第三轮复习是综合训练,为此,需要做好以下两件事:
1、 精编模拟试题,了解考前信息,提高实战能力。
精心准备综合训练题(5-6套不多就够了)试卷一方面是要以“三基”为主,全面覆盖;另一方面又要是教材重点和考试热点,有针对性的强化,它的综合性和信息的时效性都是平时作业和单元过关考试无法代替的。前面两论复习是以老师评讲为主,现在则是以学生的训练为主,再让学生做几套模拟实战的综合训练题,真实的反映自己的水平。教师再进行针对性的讲解,给学生一个深层次的提高,做到进一步训练思维能力,培养思维品质,提高实战时的分析问题和解决问题的能力。
2、 要让学生积累考试经验,防止以后高考的怯场
第三轮复习已经临近高考,故的两套模拟试卷的试题难度要适当,具有安慰性和稳定性。切忌出怪题、偏题以及过难的综合体。考过后一定要立即批改加以评讲,对考的学生要大力表扬,并指出不足;对考的的学生要加以鼓励,以增强其即将投入高考的信心。
对这两套模拟题的准备要做到四个心里有数:①还要加强教材中哪些知识点②还要考查哪几种数学思维方法以及思维能力③还要纠正学生解题中常见的错误。④还要解决哪些数学中的思维障碍。
同时还要向学生指出,并不因为前几次考试不理想而影响高考实际水平的发挥。这时千万不能盲目照搬外地的试卷,能够再一次的通过这两次的考试,总结前阶段的学习和考试的经验,力争做到知己知彼,百战不殆。此外还要消除思想障碍,稳定思想情绪,以良好的身体状态,心理状态进入考场。限度的发挥自己实际的应有水平,考出理想的成绩。
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
解题思路:数形结合。
高考中选择题和填空题大部分可以用图解法来解。
譬如sinx-x=-0.4π怎么解x?
做出y=sinx和 y=x-0.4π的图像,并找到两条曲线的交点。
高中数学中换元法还涉及不多,
在大学学习解微积分时用处可大了。
这样比较直观。
1,有定义域的先求定义域
2,多画图分析
3,公式要熟悉,公式的变形往往会在题目中给出
4,考试时打草稿一定要按顺序写好,高考时好检查
5,我考试的时候发现不会就选C 或者A
数学学科担负着培养运算能力、 逻辑思维 能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。下面就是我给大家带来的 高三数学 证明题推理 方法 ,希望大家喜欢!
② 考题分析一、合情推理
1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;
2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。
二、演绎推理
演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。
三、直接证明与间接证明
直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
间接证明是相对于直接证明说的,反证法是间接证明常用的方法。设原命题不成立,经过正确的推理,得出矛盾,因此说明设错误,从而证明原命题成立,这种证明方法叫做反证法。
数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
高三数学的复习的记忆法二
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。例如,平行四边形的性质,我们只要记住它的定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。
三、标志记忆法
在学习某一章节知识时,先看一遍,对于重要部分用彩笔在下面画上波浪线,再记忆时,就不需要将整个章节的内容从头到尾逐字逐句的看了,只要看划重点的地方并在它的启示下就能记住本章节主要内容,这种记忆称为标志记忆。
在重复记忆某一章节的知识时,不看具体内容,而是通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时,回想记忆法与标志记忆法是配合使用的。
高三数学的做作业的注意事项三
1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。
2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学的知识,找到解决问题的途径和方法。
3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。
4、作业要完成。只有经过自己动脑思考动手作,才能促进自己对知识的消化和理解,才能培养锻炼自己的思维能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。
5、认真更正错误。作业经老师批改后,要仔细看一遍,对于作业中出现的错误,要认真改正。要懂得,出错的地方,正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。
6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌写了又改,改了又擦,使作业涂改过多。书写要工整,解题步骤既要简明、有条理,又要完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。
7、作业要保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。
高三数学的上课建议四
1、课前准备好上课所需的课本、 笔记本 和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。
2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。
3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。
4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。
5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。
6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。
7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后 总结 ,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。
8、要养成记笔记的好习惯。是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。
高三数学证明题推理方法相关 文章 :
★ 高考数学解题方法汇总
★ 高三数学大题解题技巧
★ 高考数学答题策略技巧
★ 高考数学导数解题技巧及方法
★ 高三数学会考知识点整理大全
★ 5篇高三数学教案总结
★ 高三数学复习方法总结
★ 高三数学的选择题技巧 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
数列和不等式应该是比较好学习的。
主要数列就注意求通项问题,化归等等比数列问题和求和问题,其它的就没什么了。
注意总结方法,乘比错位相减法,累加累乘法等!
不等式记住重要的不等式
平方均值大于等于算术均值大于等于几何均值大于等于调和均值等等整理一下,
找关系和技巧就好了!
研究数列的最重要课题是讨论数列的极限,这一点在高等数学里会有更深入的研究;高等数学里还要深入研究级数(即数列的和)。
中学里除了学习数列里一些最基本的概念,我以为只要学好等数列与等比数列就可以了。
1、熟练掌握等数列与等比数列的概念,包括定义、公与公比等;
2、会写等数列与等比数列的通项公式,知道等中项与等比中项的性质,并且会利用这些性质;
3、会写出等数列与等比数列前n项部分和。
把上面概念搞清楚了,就是数列部分学好了。
应当指出,写数列的通项公式和前n项部分和,对于一般的数列而言是很困难的,甚至是不可能的,没有必要在这方面化太多的精力与时间,因为化了再多的精力,未必能够有什么收效。我经常在这里看到有这样一类的题目,即写了几个数,问中间或后面出现的是什么数,这实际上是游戏,不是数学,对学习数学并没有什么好处,这种题目不会也罢。
基础要熟之外,还有一个就是不能怂。数列本身内容少,但是题型能出的让知识点藏很深,要一定灵活分析。多练可能有用,但题目出永的远比你做是快,所以要有这种心态四、数学归纳法
学好数列就是要多做些题型
这个得靠自己多写一点题目
平时做数学题的速度慢,考试的时候速度会更慢。因为考试比较容易紧张,不仅速度慢,还可能会把自己原本会做的题做错。因此掌握一些数学的解题方法尤为重要。下面是我分享的高考数学的解题方法,一起来看看吧。
高考数学的解题方法
熟悉基本的解题步骤和解题方法
解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程式,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的。
对于一道具体的习题,解题时最重要的环节是审题。审题的步是读题,这是获取资讯量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些资讯,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
函式值域是函式概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。所以,我们应该掌握一些简单函式的值域求解的基本方法。
学会画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函式的影象和意义及演变过程和条件,对于提高解题速度非常重要。
离心率的求值或取值范围问题
圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础。
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
数列求和方法
数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。
高考数学解题时的注意事项
1.精选题目,避免题海战术
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2.认真分析题目
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联络的桥梁,也就是在分析题目中已知与待求之间异的基础上,消除这些异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
3.做好题目总结
1在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3能否归纳出题目的型别,进而掌握这类题目的解题方法。
高考数学解题策略
1注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
2答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的 和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
3数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函式的性质、数列的性质就是常见题目。
4挖掘隐含条件,注意易错易混点,例如 中的空集、函式的定义域、应用性问题的限极端性原则制条件等。
5方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值含特殊值、特殊位置、特殊图形、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
6控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2018年浙江高考数学试卷试题及解析(WORD版)
2015年浙江省高考数学命题思路
(数学学科组)
2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。
试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。
1.稳定考查基础,推陈出新
2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。
2.稳定能力要求,角度变换
试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。
3.稳定文理异,逐步调整
试卷关注文理学生的学习异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。
4.稳定试卷框架,形式渐变
试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。
试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。
2015年浙江省高考数学试题评析
绍兴一级教师虞金龙
浙江省教研室特级教师张金良
今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:
1.考查双基、注重覆盖
试卷全面考查再次,我们必须选择一定数量的习题练习来验证我们的想法。这时候做题一定要仔细完整。接下来,对照检查做得是否正确。如果错误,就要分析自己的思路在哪里出了问题。,再回想一遍。以后考试,遇到此类习题就能轻松地找到入手途径,节省时间。了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、值与最小值、三角函数、数列、立体几何层次:导数的概念、求导的公式和求导的法则;、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。
2.注重思维、凸显能力
今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。
3.分层考查、文理有别
试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。
4.稳中有变、坚持创新
创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。
统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要学生学会在“看、做、想、研”的基础上做题。
高中数列求和的方法有很多种,比如公式法3.你会用补集的思想解决有关问题吗?、错位相减法、裂项相消法、倒序相加法和数学归纳法等。
1、公式法。适用于最基本的等、等比数列或可转化为等、等比数列的数列。等数列求和公式属于等数列中的一种,用于计算等数列从首项至末项的和。公式法是最基本最重要的方法,必须掌握。
2、错位相减法。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等数列和等比数列。
3、裂项相消法。这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解。
4、倒序相加法。类似于等数列前n项和公式的推导方法。一般来说,数列前n项具有与两端等距离项的和相等的数列,可用这种方法求和。
5、数学归纳法。数学归纳法是证明与自然数n有关的数学命题或猜想的一种常用的推理方法。
6、自然数方幂和公式法。自然数幂求和公式是李善兰先生提出的一种数列求和公式。它的提出在数学史上有重要地位。它不是一个等数列,也不是一个等比数列,但通过二项式定理的展开式,可以转化为按等数列,由低次幂到高次幂递进求和,最终可推导至李善兰自然数幂求和公式的原形。
学过的知识与 方法 很可能被遗忘,要想牢固掌握,并形成能力,就必须科学而有效地进行复习,以期达到温故知新的目的!接下来是我为大家整理的高中数学基础 知识大全 ,希望大家喜欢!
(1)题目涉及的领域增多,包括生产生活、科学与科技、时政热点、民生等各个领域,题目的考查方向更注重理论联系实际,题目的文本体量和范围进一步增大,与文本相关联的信息更加开放和多元化。高中数学基础知识大全一
球的定义:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫球体,简称球。
半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
第二定义:球面是空间中与定点的距离等于定长的所有点的。
球:
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体(solid sphere),简称球。
高中数学基础知识大全二
专题一:
考点1:的基本运算
考点2:之间的关系
专题二:函数
考点3:函数及其表示
考点4:函数的基本性质
考点5:一次函数与二次函数.
考点6:指数与指数函数
考点7:对数与对数函数
考点8:幂函数
考点9:函数的图像
考点10:函数的值域与最值
考点11:函数的应用
专题三:立体几何初步
考点12:空间几何体的结构、三视图和直视图
考点14:点、线、面的位置关系
考点15:直线、平面平行的性质与判定
考点16:直线、平面垂直的判定及其性质
考点17:空间中的角
考点18:空间向量
高中数学基础知识大全三
1. 高中数学新增内容命题走向
新增内容:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用。
命题走向:试卷尽量覆盖新增内容;难度控制与中学教改的深化同步,逐步提高要求;注意体现新增内容在解题中的独特功能。
(1)导数试题的三个层次
第二层次:导数的简单应用,包括求函数的极值、单调区间,证明函数的增减性等;
第三层次:综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等结合在一起。
(2)平面向量的考查要求
b.考查向量的坐标表示,向量的线性运算。
c.和其他数学内容结合在一起,如可和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。题目对基础知识和技能的考查一般由浅入深,入手不难,但要完成解答,则需要严密的逻辑推理和准确的计算。
(3)概率与统计部分
基本题型:等可能概率题型、互斥有一个发生的概率题型、相互的概率题型、重复试验概率题型,以上四种与数字特征计算一起构成的综合题。
复习建议:牢固掌握基本概念;正确分析随机试验;熟悉常见概率模型;正确计算随机变量的数字特征。
2. 高中数学的知识主干
函数的基础理论应用,不等式的求解、证明和综合应用,数列的基础知识和应用;三角函数和三角变换;直线与平面,平面与平面的位置关系;曲线方程的求解,直线、圆锥曲线的性质和位置关系。
3. 传统主干知识的命题变化及基本走向
(1)函数、数列、不等式
a.函数考查的变化
函数中去掉了幂函数,指数方程、对数方程和不等式中去掉了“无理不等式的解法、指数不等式和对数不等式的解法”等内容,这类问题的命题热度将变冷,但仍有可能以等式或不等式的形式出现。
b.不等式与递归数列的综合题解决方法
化归为等或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。
c.函数、数列、不等式命题基本走向:创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式;归纳法、数学归纳法的考查方式由主体转向局部。
(2)三角函数
结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;与导数结合,考查三角函数性质及图象;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查灵活运用知识能力。
(3)立体几何
由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、作、设计等的适当关注;加大向量工具应用力度;改变设问方式。
(4)解析几何
a.运算量减少,对推理和论证的要求提高。
b.考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查:曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型。
c.注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来。
d.向量、导数与解析几何有机结合。
4. 关注试题创新
(1)知识内容出新:可能表现为高观点题;避开 热点 问题、返璞归真。
a.高观点题指与高等数学相联系的问题,这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。高观点题的起点高,但落点低,也就是所谓的“高题低做”,即试题的设计来源于高等数学,但解决的方法是中学所学的初等数学知识,所以并没将高等数学引进高中教学的必要。考生不必惊慌,只要坦然面对,较易突破。
b.避开热点问题、返璞归真:回顾近年来的试题,那些最有冲击力的题,往往在我们的意料之外,而又在情理之中。
(2)试题形式创新:可能表现为:题目情景的创设、条件的呈现方式、设问的角度改变等题目的外在形式。
另请注意:研究性课题内容与高考(高考,高考说吧)命题内容的关系、应用题的试题内容与试题形式。
(3)解题方法求新:指用新教材中的导数、向量方法解决旧问题。
5. 高考数学命题展望
新增知识加大考:考查力度及所占分数比例会超过课时比例,将新增知识与传统知识综合考是趋势。
思想方法更深入:考查与数学知识联系的基本方法、解决数学问题的科学方法。
突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。
运算能力有所提高:淡化繁琐、强调能力,提倡学生用简洁方法得出结论。
空间想象能力平稳过渡:形式不会大变,但将向量作为工具来解立体几何是趋势。
实践应用能力进一步加强:从实际问题中产生的应用题是真正的应用题,而试题只是构建一种模式的是主干应用题。
考查创新学习能力:学生能选择有效的方法和手段,要有自己的思路,创造性地解决问题。
个性品质得以彰显。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。