辽宁数学文科试卷首次采用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。
2019年湖南高考数学文科试卷WORD版 2019年湖南高考理科数学
2019年湖南高考数学文科试卷WORD版 2019年湖南高考理科数学
以往辽宁的数学自主命题卷,都是在选择一题与填空的一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,的平均分也会比有所提高。
{很好找啊 } 上海 数学试卷(文史类)
考生注意:
1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道6.若球O1、O2表示面积之比 ,则它们的半径之比 =_____________.试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________.
2.已知集体A={x|x≤1},B={x|≥a},且A∪B=R,
则实数a的取值范围是__________________.
3. 若行列式 中,元素4的代数余子式大于0,则x满足的条件是__________________.
4.某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是________________.
5.如图,若正四棱柱ABCD—A1B1C1D1的底面边长为2,
高为4,则异面直线BD1与AD所成角的大小是___________________
(结果用反三角函数值表示).
7.已知实数x、y满足 则目标函数z=x-2y的最小值是___________.
8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。
9.过点A(1,0)作倾斜角为 的直线,与抛物线 交于 两点,则 = 。
10.函数 的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知 是椭圆 的两个焦点, 为椭圆 上的一点,且 。若 的面积为9,则 .
13.已知函数 。项数为27的等数列 满足 且公 ,若 ,则当k= 时, 。
14.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点。若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点 为发行站,使5个零售点沿街道发行站之间路程的和最短。
二。、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确,考生应在纸的相应编号上,将代表的小方格涂黑,选对得4分,否则一律得零分。
15.已知直线 平行,则K得值是( )
16,如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )
17.点P(4,-2)与圆 上任一点连续的中点轨迹方程是 [答]( )
(A) (B)
(C) (D)
18.在发生某公共卫生期间,有专业机构认为该在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 [答]( )
(A)甲地:总体均为3,中位数为4 . (B)乙地:总体均值为1,总体方大于0 .
(C)丙地:中位数为2,众数为3 . (D)丁地:总体均值为2,总体方为3 .
三.解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .
19.(本题满分14分)
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,
,若 // ,求证:ΔABC为等腰三角形;
(1) 若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积
21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分 .有时可用函数
描述学习某学科知识的掌握程度.其中 表示某学科知识的学习次数( ), 表示对该学科知识的掌握程度,正实数a与学科知识有关
(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121〕,(121,127〕,
(127,133〕.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.
已知双曲线C的中心是原点,右焦点为F ,一条渐近线m: ,设过点A 的直线l的方向向量 。
(1) 求双曲线C的方程;
(2) 若过原点的直线 ,且a与l的距离为 ,求K的值;
(3) 证明:当 时,在双曲线C的右支上不存在点Q,使之到直线l的距离为 .
23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.
已知 是公为d的等数列, 是公比为q的等比数列
(2)若 (a、q为常数,且aq 0)对任意m存在k,有 ,试求a、q满足的充要条件;
(3)若 试确定所有的p,使数列 中存在某个连续p项的和式数列中 的一项,请证明.
上海 (数学文)参
一、 填空题
1. 2.ɑ≤1 3. 4.
5 6.2 7.-9 8.
9. 10. 11. 12.3
13.14 14(3,3)
二、选择题
题号 15 16 17 18
代号 C B A D
三、 解答题
19.解:原方程的根为
20题。证明:(1)
即 ,其中R是三角形ABC外接圆半径,
为等腰三角形
解(2)由题意可知
由余弦定理可知,
21题。证明(1)当 时,
而当 时,函数 单调递增,且
故函数 单调递减
当 时,掌握程度的增长量 总是下降
(2)有题意可知
整理得
解得 …….13分
由此可知,该学科是乙学科……………..14分
22.【解】(1)设双曲线 的方程为
,解额 双曲线 的方程为
(2)直线 ,直线
由题意,得 ,解得
(3)【证法一】设过原点且平行于 的直线
则直线 与 的距离 当 时,
又双曲线 的渐近线为
双曲线 的右支在直线 的右下方,
双曲线 右支上的任意点到直线 的距离大于 。
故在双曲线 的右支上不存在点 ,使之到直线 的距离为
【证法二】设双曲线 右支上存在点 到直线 的距离为 ,
则由(1)得
设 ,
当 时, ;
将 代入(2)得
,方程 不存在正根,即设不成立,
故在双曲线 的右支上不存在点 ,使之到直线 的距离为
23.【解】(1)由 得 ,
整理后,可得
、 , 为整数
不存在 、 ,使等式成立。
(2)当 时,则
即 ,其中 是大于等于 的整数
反之当 时,其中 是大于等于 的整数,则 ,
显然 ,其中
、 满足的充要条件是 ,其中 是大于等于 的整数
(3)设
当 为偶数时, 式左边为偶数,右边为奇数,
当 为偶数时, 式不成立。
由 式得 ,整理得
当 时,符合题意。
当 , 为奇数时,
由 ,得
当 为奇数时,此时,一定有 和 使上式一定成立。
当 为奇数时,命题都成立。
去买金考卷,有题目有,而且都是详解。不要从网上看试卷,一来网上的一般不全,都是简略版的,填空题往往只有结果;二来网上的东西质量会没有保障;三来从网上看不好自己动手做,不方便。
2009年的全国各地高考真题,地址
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。