高考数学重点每年会做细微调节,但基本重点的调节不大,以下是2010年的高考数学大纲。
高考数列求和真题较难_高考数列解题技巧
高考数列求和真题较难_高考数列解题技巧
一、2010年高考数学考查的重点:
根据《2010高考数学考试大纲》,重点考察函数、数列、三角函数、平面向量、不等式、立体几何、解析几何、概率统计、导数九大章节。作为高考来讲重点考查下面几个版块:
(1)函数与导数:在这个版块重点考查,二次函数,高次函数,分式函数和复合函数的单调性和最值,考生尤其要重视分式函数和指对复合函数的单调性和值域的求解方法。同时考生应重视函数与数列、函数与不等式的结合,灵活掌握处理这类综合题的方法和技巧,抓住典型例题,以不变应万变。
(2)平面向量与三角函数:在这个版块里,将向量作为一种工具放在三角函数里考,重点考查三方面:①三角的化简与求值,考查化简与求值,重点考察的是五组三角公式,包括同角基本公式,诱导公式,倍半公式,和公式和辅助角公式②图象和性质:在这里重点考查的是正弦函数和余弦函数的图象和性质,掌握正弦和余弦函数的性质应该从以下的7个方面去掌握:定义域,值域,单调性,奇偶性,图象,周期性和对称性,特别是正弦和余弦函数的性质是高考重点中的重点,应特别关注。③三角恒等变形,这部分重点考察的还是一些基本公式的应用,提醒各位考生应加强对基本公式的理解和记忆。
(3)数列:在这个版块里重点考查的是数列的通项与求和,在这里面我们重点掌握几种常见求通项的方法,包括公式法,待定系数法等等,在求和里面我们重点掌握几种常见求和的方法,包括利用公式法,裂项相加法,错位相减法等等,在这里要强调的是要掌握每一种方法所适应于哪一类的数列。一般来讲在高考中通项是重点也是难点,特别是项与项之间的递推公式应重点掌握。对于数列的求和特别应该重视等比数列求和公式中公比的限制性条件,这是高考的一个易错点,应重点关注!
(5)概率和统计:高中阶段重点掌握古典概型、几何概型和随机变量三类基本模型。这部分在高考中是以应用题的形式出现,在这里我要强调的是概率这道题在高考中难度往往较小,考生只需要认真读题,读懂题意,分清类型就可以解答出来了。对于2010年高考来说考生应重视统计这一部分的学习,特别是线性回归、统计方法等考生应准确理解基本概念并会简单应用。
(6)解析几何:这个版块我总结了在高考中常考的五种模型:类:直线和曲线的位置关系及向量的计算,这类题目是高考最常见的一类问题,考生应掌握它的通法。第二类:动点问题(消参法),在这里需要强调的是要注意动点所满足的范围限制。第三类:弦长问题(公式法),在这里考生只需要会利用弦长公式就可以了;第四类:对称问题(代换法),即找中点来代换;第五类:中点问题(点法)。解析几何的这道题目往往是整个试卷中计算量的一道题目了,很多同学会做但不会算,这种情况在高考中是很常见的,这就需要我们在平时训练的时候要善始善终,每做一道题就坚持把它算完,长期坚持养成好习惯,运算能力自然就会提高。这五类模型考生都应该重点掌握,高考中尽管解析的难度较大,但万变不离其宗,只要基本模型熟练掌握,应对这道大题还是绰绰有余的。
(7)数列,函数与不等式:这个版块往往考的是压轴题,以不等式的证明为主,难度往往很大,考生在复习备考中应重点积累一些不等式的证明方法,包括放缩法,数学归纳法等等。虽然难度较大,我建议考生采取分步得分,不留空白。对于这部分的复习我建议可以放在后期,5月份之后可以适当看看已经考过的压轴题,开阔思路,对于大部分考生不作重点要求。
二、四个月应该注意的问题:
现在距离2010年高考还有四个多月的时间,这是考生综合素质提高的黄金时间,这段时间,也称为全面复习阶段,同学们需要把前面一些零散的知识点系统化、条理化、模块化,找到学科中的宏观线索,提纲挚领,全面到位。下面我根据以往的高考数学复习的经验,结合考生的学习体会,谈谈这四个月的复习建议。
(一)、全面落实双基,保证驾轻就熟
目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能突破难题,战胜新题。在这里我要强调的是教材是,只有把握了教材,也就切中了要害。不仅要深刻理解教材中的知识,更重要的是要关注教材中解决问题的思想方法,还要全面把握知识体系,做到不掌握不放过。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留空白和隐患。复习阶段不防从课本的目录入手,进行串联,形成体系。同时要配以适量的练习,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,扫除障碍。回归教材、吃透课本,千万不能眼高手。,对于教材的复习,建议可以重点看看概率和统计、数列、函数、导数、圆锥曲线这几章的例题。
(二)、重视错题病例,实时亡羊补牢
错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会,因此我建议在后期冲刺的阶段我们一定要建立错题库,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅,常常提醒,警钟长鸣。
(三)、抓住典型例题,争取融会贯通
现在离高考已不远了,时间非常紧张,因此在的复习阶段考生应该抓住宝贵的时间,在最短时间内程度提高学习效率,那我们就不能做大量重复的无用功,因此我们要学会选题,那就需要我们抓住一些典型问题,借题发挥,充分挖掘。具体的就是解题后反思。反思题意,总结解此类题目的方法和技巧,同时我们还要学会典型问题的引申变化,促进知识的串联和方法的升华。那么到底什么是典型例题呢?那就是高考真题,特别是近三年以来高考真题中的解答题(重点做前5道)
(四)、精读考试大纲,确保了如指掌
《考试说明》是高考命题的依据,〈大纲〉明确告诉我们高考考什么、考多难、怎样考这三个问题。考生一定要明确考试的知识要求。针对教材与复习时的笔记逐一对照,看是否得到了落实,确保没有遗漏,对于那些没有没达要求的决不罢手。特别是大纲中调整的内容,比如2010新课标高考新增三视图,程序与框图、极坐标、几何概型、微积分等必须高度重视,明确要求,提高复习的针对性和实效性。另外,对试卷的形式,题型、考试时间、分值等等也应一清二楚。
(五)、加强毅力训练,做到持之以恒
的四个月是高考冲刺最关键的时候,很多考生身心俱疲,那就看谁能坚持到谁就能取得胜利。的阶段,我们同样每天要有明确的学习,并坚决执行,不寻找借口。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且容易出错,若5天不训练将会不进而退。所以,建议各个学科每天都要有所巩固,遇到困难应及时解决,不能积累,否则会打击信心,丧失斗志,要想高考成功,即要有热情更要有毅力!
已知数列{bn}前n项和为Sn,且bn=2-2sn,数列{an}是等数列,a5=5/2,a7=7/2.
①求{bn}的通向公式。
② 若cn=anbn,n=1,2,3…..求;数列{cn}前n项和Tn
1、b1=2-2b1
当n>=2时
b n=2-2s n (1)
b(n-1)=2-2s(n-1) (2)
(1)式-(2)式得:
bn-b(n-1)=2s(n-1)-2sn
bn-b(n-1)= -2bn
3bn=b(n-1)
bn/b(n-1)=1/3
bn=b1(1/3)^(n-1)=2(1/3)^n
经检验当n=1时等式成立
所以:bn=2(1/3)^n
2、a7=a5+2d
an=a5+(n-5)d=0.5n
cn=anbn=n(1/3)^n
Tn=1(1/3)^1+2(1/3)^2+3(1/3)^3+...+n(1/3)^n
1/3Tn=1(1/3)^2+2(1/3)^35、巧用数列性质:数列问题中有些性质和规律可以帮助我们解决问题,如等数列的前n项和公式、等比数列的前n项和公式、等比数列的中项公式等,在实践中要灵活掌握这些性质和规律,熟练运用到解题过程中。+3(1/3)^4+...+(n-1)(1/3)^n+n(1/3)^(n+1)
Tn-1/3Tn=1/3+(1/3)^2+(1/3)^3+(1/3)^4+...+(1/3)^n+n(1/3)^(n+1)
Tn= 3/4[1-(1/3)^n] +3n/2(1/3)^(n+1)
=0.75-0.25(1/3)^(n-1)+0.5n(1/3)^n
17
an=1/[n(n+1)/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
Sb1=2/3n=2[1/1-1/(n+1)=F(3)-rF(2)=s[F(2)-rF(1)]2n/(n+1)
等数列前n项和一写,然后用裂项法。如果没算错的话是2n/(n+1)
1、高中数列,有规律可循的类型无非就是两者,等数列和等比数列,这两者的题目还是比较简洁的,要把公式牢记住,求和,求项也都是比较=(a(n-5)+1)^32简洁的,公式的运用要熟识。
2、题目经常不会如此简洁简单,略微加难一点的题目,就是等和等比数列的一些组合题,这里要采纳的一些方法有错位相消法。
3、题目变化多端,往往消失的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,平时积累的经验和方法很重要。
4、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为d=0.5函数等方法等方法。
由:an=a(n-1)^2+2a(n-1)
所以n小时后的细胞数为32^n+4得:
an+1=(a(n-1)+1)^2
=(a(n-2)+1)^4
=(a(n-3)+1)^8
=(a(n-4)+1)^16
...
=(a1+1)^(2^(n-1))
=10^(2^(n-1))
即有:an=10^(2^(n-1))-1
又由:
=1/(an+2)+1/a(n+1)
=an/a(n+1)+1/a(n+1)
=(an+1)/a(n+1)
=(an^2+an)/a(n+1)/an
=(a(n+1)-an)/a(n+1)/an
=1/an-1/a(n+1)
两边从1到n求和得:
Sn-S0=1/a1-1/a(n+1)
即:Sn=1/9-1/(10^(2^n)-1)
高考数学数列解题技巧:基本概念掌握、判定数列类型、善用通项公式、善于列方程、巧用数列性质。
1、基本概念掌握:需要准确掌握数列的基本概念,如等数列、等比数列、通项公式、公、首项、末项等,这是解题的基础。
2、判定数列类型:在数列问题中,有时需要对数列类型进行鉴定,如等、等比或等等比混合数列等,而不同类型的数列在求解时具有不同的方法和技巧。
3、善用通项公式:通项公式是解数列问题中最为关键的公式之一,可以轻松求出任意项的值,因此需要熟练掌握各个类型的数列通项公式。
4、善于列方程:对于一些较复杂的数列问题,可以通过列方程来解决,可以将问题转换为一些简单的方程求解,这是数列解题的一种重要思维方法。
高考数学数列概念
高考数学数列是高考数学中的一个重点考点。数列是指将一系列的数按照一定的规律排列成一个序列的数学概念。
数列可以用通项公式表示,通项公式指的是一个数列中任意一项与其下标之间的关系式,使用通项公式可以求解数列中任意位置的数值,或者利用求和公式求出数列的前n项和。数列分为等数列、等比数列、等等比数列等类型。
在高考数学中,数列经常涉及到以下的问题:已知一个数列的前几项或某个特定的数值,求这个数列的通项公式;已知数列的通项公式和A(n+1)=2(An-2)某一项的值,求解数列中任意一项的值;已知一个数列的前n项和,求出这个数列的通项公式等等。在解决这些问题的过程中,需要灵活运用各种公式和解题技巧,掌握数列的基本性质和规律,从而顺利应对数列这一考点。
数列是高考数学的重要部分,需要掌握数列的常见性质和公式,加强数列的理论学习和解题能力,以应对高考数学的挑战。
设第n小时细胞个数为An个,则第(n+1)小时细胞数为:
得:A(n+1)-4=2(An-4)
得:An-4=(A1-4)2^(n-1) 而A1=(7-2)2=10
得:An=62^(n-1) +4
PS:这道题不能算难题..只是个转换的技巧,你多找些数列题来做做,不会的仔细对照下,看看的方法,数列题也就不难了....(哈哈,我站着说话不腰= = ~希望对你有些帮助吧~)
An表示n小时后细胞的细胞个数,有
A(n+1)=2(An-2)
也就Xn-PXn-1+QXn-2=0是
A(n+1)-4=2(An-4)
把An-4看成一个新的数列,设为Bn,Bn是等比数列且B0=A0-4=7-4=3
Bn=32^n
An=Bn+4=32^n+4
则n小时是2[a(n-1)-2]
所以an=2[a(n-1)-2]=2a(n-1)-4
an-4=2[a(n-1)-4]
所以an-4是等比数列,q=2
a1-4=7-4=3
所以an-4=32^(n-1)
an=4+32^(n-1)
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
(4)空间向量和立体几何:2010新课标高考对这个版块的要求降低。特别是对文科同学来说,对于角度和距离的计算仅限于线线角和点面距离、几何体的表面积和体积。在证明中以线面平行,线面垂直的证明为主。对于理科同学来讲,在这里我建议大家要掌握利用空间向量俩来解决立体几何中的证明和计算问题。特别强调的是利用空间向量求解的时候必须准确记忆角度和距离的计算公式,然后理解公式中各字母的含义,按照公式去找条件即可。对于这部分考生除对传统的证明和计算重点掌握之外还应加强对立体几何中的翻转问题、动点问题训练,以从容应对高考中的新题、难题。近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。
知识整合
1。在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2。在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3。培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
这是一个数列的口诀,对学习数列有所帮助:
等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
先把知识点总结一下,然后再做一些,再做一些模拟题就可以了
多做题,看概念
Xn=PXn-1-QXn-2
AB=Q--------------(1)
将其化成下面格式(待定系数法):
Xn-AXn-1=B(Xn-1-AXn-2)
------------(2)
将(2)式展开,然后与(1)式的各项比较得:
A+B=P
-------------(3)
-------------(4)
因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β
Xn-αXn-1=β(Xn-1-αXn-2)
----------------(5)
依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:
Xn-1-αXn-2=β(Xn-2-αXn-3)-----------------(5.1)
Xn-2-αXn-3=β(Xn-3-αXn-4)-----------------(5.2)
......
X4-αX3=β(X3-αX2)-----------------(5.n-4)
X3-αX2=β(X2-αX1)-----------------(5.n-3)
(5)(5.1)(5.2)(5.3)...(5.n-4)(5.n-3)并消掉相同项:
Xn-αXn-1=(X2-αX1)β^(n-2)
Xn=(X2-αX1)β^(n-2)
+αXn-1
+α^2Xn-2
+(X2-αX1)β^(n-4)α^2
+α^2Xn-2
...
...
+(X2-αX1)β^(n-4)α^2+...+(X2-αX1)β^(n-m)α^(m-2)+...+(X2-αX1)α^(n-2)
+α^(n-1)X1
等比数列求和(公比为:α/β)
+α^(n-1)X1
过程比较复杂,建议你参考:
斐波那挈数列通项公式的推导:
斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)
(n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,
X2=(1-√5)/2.
则F(n)=C1X1^n
+C2X2^n
∵F(1)=F(2)=1
∴C1X1
+C2X2
C1X1^2
+C2X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5){[(1+√5)/2]^n
-[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-rF(n-1)=s[F(n-1)-rF(n-2)]
则r+s=1,
-rs=1
n≥3时,有
F(n)-rF(n-1)=s[F(n-1)-rF(n-2)]
F(n-1)-rF(n-2)=s[F(n-2)-rF(n-3)]
F(n-2)-rF(n-3)=s[F(n-3)-rF(n-4)]
……
将以上n-2个式子相乘,得:
F(n)-rF(n-1)=[s^(n-2)][F(2)-rF(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+rF(n-1)
那么:
F(n)=s^(n-1)+rF(n-1)
=s^(n-1)
+rs^(n-2)
=s^(n-1)
+rs^(n-2)
+r^3F(n-3)
……
=s^(n-1)
+rs^(n-2)
+……+
+r^(n-1)F(1)
=s^(n-1)
+rs^(n-2)
+……+
+r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公的等比数列的各项的和)
=(s^n
-r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则F(n)=(1/√5){[(1+√5)/2]^n
-[(1-√5)/2]^n}
这是思路,应该能懂,具体数值自己算吧Sn-S(n-1)=bn,一般这种题都是这种解题思路!
不懂请追问!
此题+r^2s^(n-3)分子是公为4的等数列 分母是公比为4等比数列 分别数和 相除
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。